Found problems: 85335
2005 Colombia Team Selection Test, 2
The following operation is allowed on a finite graph: Choose an arbitrary cycle of length 4 (if there is any), choose an arbitrary edge in that cycle, and delete it from the graph. For a fixed integer ${n\ge 4}$, find the least number of edges of a graph that can be obtained by repeated applications of this operation from the complete graph on $n$ vertices (where each pair of vertices are joined by an edge).
[i]Proposed by Norman Do, Australia[/i]
2007 AMC 10, 16
Integers $ a$, $ b$, $ c$, and $ d$, not necessarily distinct, are chosen independently and at random from $ 0$ to $ 2007$, inclusive. What is the probability that $ ad \minus{} bc$ is even?
$ \textbf{(A)}\ \frac {3}{8}\qquad \textbf{(B)}\ \frac {7}{16}\qquad \textbf{(C)}\ \frac {1}{2}\qquad \textbf{(D)}\ \frac {9}{16}\qquad \textbf{(E)}\ \frac {5}{8}$
2009 Finnish National High School Mathematics Competition, 5
As in the picture below, the rectangle on the left hand side has been divided into four parts by line segments which are parallel to a side of the rectangle. The areas of the small rectangles are $A,B,C$ and $D$. Similarly, the small rectangles on the right hand side have areas $A^\prime,B^\prime,C^\prime$ and $D^\prime$. It is known that $A\leq A^\prime$, $B\leq B^\prime$, $C\leq C^\prime$ but $D\leq B^\prime$.
[asy]
import graph; size(12cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-4.3,xmax=12.32,ymin=-10.68,ymax=6.3;
draw((0,3)--(0,0)); draw((3,0)--(0,0)); draw((3,0)--(3,3)); draw((0,3)--(3,3)); draw((2,0)--(2,3)); draw((0,2)--(3,2)); label("$A$",(0.86,2.72),SE*lsf); label("$B$",(2.38,2.7),SE*lsf); label("$C$",(2.3,1.1),SE*lsf); label("$D$",(0.82,1.14),SE*lsf); draw((5,2)--(11,2)); draw((5,2)--(5,0)); draw((11,0)--(5,0)); draw((11,2)--(11,0)); draw((8,0)--(8,2)); draw((5,1)--(11,1)); label("$A'$",(6.28,1.8),SE*lsf); label("$B'$",(9.44,1.82),SE*lsf); label("$C'$",(9.4,0.8),SE*lsf); label("$D'$",(6.3,0.86),SE*lsf);
dot((0,3),linewidth(1pt)+ds); dot((0,0),linewidth(1pt)+ds); dot((3,0),linewidth(1pt)+ds); dot((3,3),linewidth(1pt)+ds); dot((2,0),linewidth(1pt)+ds); dot((2,3),linewidth(1pt)+ds); dot((0,2),linewidth(1pt)+ds); dot((3,2),linewidth(1pt)+ds); dot((5,0),linewidth(1pt)+ds); dot((5,2),linewidth(1pt)+ds); dot((11,0),linewidth(1pt)+ds); dot((11,2),linewidth(1pt)+ds); dot((8,0),linewidth(1pt)+ds); dot((8,2),linewidth(1pt)+ds); dot((5,1),linewidth(1pt)+ds); dot((11,1),linewidth(1pt)+ds);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
[/asy]
Prove that the big rectangle on the left hand side has area smaller or equal to the area of the big rectangle on the right hand side, i.e. $A+B+C+D\leq A^\prime+B^\prime+C^\prime+D^\prime$.
2019 Purple Comet Problems, 13
There are relatively prime positive integers $m$ and $n$ so that the parabola with equation $y = 4x^2$ is tangent to the parabola with equation $x = y^2 + \frac{m}{n}$ . Find $m + n$.
1986 Traian Lălescu, 1.4
Let $ f:(0,1)\longrightarrow \mathbb{R} $ be a bounded function having the property of Darboux. Then:
[b]a)[/b] There exists $ g:[0,1)\longrightarrow\mathbb{R} $ with Darboux’s property such that $ g\bigg|_{(0,1)} =f\bigg|_{(0,1)} . $
[b]b)[/b] The function above is uniquely determined if and only if $ f $ has limit at $ 0. $
2022 AMC 10, 3
The sum of three numbers is $96$. The first number is $6$ times the third number, and the third number is $40$ less than the second number. What is the absolute value of the difference between the first and second numbers?
$\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 3 \qquad \textbf{(D) } 4 \qquad \textbf{(E) } 5$
2023 Romania Team Selection Test, P1
Let $m$ and $n$ be positive integers, where $m < 2^n.$ Determine the smallest possible number of not necessarily pairwise distinct powers of two that add up to $m\cdot(2^n- 1).$
[i]The Problem Selection Committee[/i]
2017 USAMTS Problems, 3
Let $ABC$ be an equilateral triangle with side length $1$. Let $A_1$ and $A_2$ be the trisection points of $AB$ with $A_1$ closer to $A$, $B_1$ and $B_2$ be the trisection points of $BC$ with $B_1$ closer to $B$, and $C_1$ and $C_2$ be the trisection points of $CA$ with $C_1$ closer to $C$. Grogg has an orange equilateral triangle the size of triangle $A_1B_1C_1$. He puts the orange triangle over triangle $A_1B_1C_1$ and then rotates it about its center in the shortest direction until its vertices are over $A_2B_2C_2$. Find the area of the region that the orange triangle traveled over during its rotation.
2023 Tuymaada Olympiad, 5
A graph contains $p$ vertices numbered from $1$ to $p$, and $q$ edges numbered from $p + 1$ to $p + q$. It turned out that for each edge the sum of the numbers of its ends and of the edge itself equals the same number $s$. It is also known that the numbers of edges starting in all vertices are equal. Prove that
\[s = \dfrac{1}{2} (4p+q+3).\]
2023 Turkey MO (2nd round), 5
Is it possible that a set consisting of $23$ real numbers has a property that the number of the nonempty subsets whose product of the elements is rational number is exactly $2422$?
2017 AMC 10, 20
The number $21!=51,090,942,171,709,440,000$ has over $60,000$ positive integer divisors. One of them is chosen at random. What is the probability that it is odd?
$\textbf{(A)} \frac{1}{21} \qquad \textbf{(B)} \frac{1}{19} \qquad \textbf{(C)} \frac{1}{18} \qquad \textbf{(D)} \frac{1}{2} \qquad \textbf{(E)} \frac{11}{21}$
2018 JBMO TST-Turkey, 7
In the round robin chess tournament organized in a school every two students played one match among themselves. Find the minimal possible number of students in the school if each girl student has at least 21 wins in matches against boy students and each boy student has at least 12 wins in matches against girl students.
2010 Indonesia TST, 1
Let $ a$, $ b$, and $ c$ be non-negative real numbers and let $ x$, $ y$, and $ z$ be positive real numbers such that $ a\plus{}b\plus{}c\equal{}x\plus{}y\plus{}z$. Prove that
\[ \dfrac{a^3}{x^2}\plus{}\dfrac{b^3}{y^2}\plus{}\dfrac{c^3}{z^2} \ge a\plus{}b\plus{}c.\]
[i]Hery Susanto, Malang[/i]
2020 CMIMC Algebra & Number Theory, 1
Suppose $x$ is a real number such that $x^2=10x+7$. Find the unique ordered pair of integers $(m,n)$ such that $x^3=mx+n$.
2005 AMC 8, 12
Big Al, the ape, ate 100 bananas from May 1 through May 5. Each day he ate six more bananas than on the previous day. How many bananas did Big Al eat on May 5?
$ \textbf{(A)}\ 20\qquad\textbf{(B)}\ 22\qquad\textbf{(C)}\ 30\qquad\textbf{(D)}\ 32\qquad\textbf{(E)}\ 34 $
1998 Cono Sur Olympiad, 1
We have $98$ cards, in each one we will write one of the numbers: $1, 2, 3, 4,...., 97, 98$.
We can order the $98$ cards, in a sequence such that two consecutive numbers $X$ and $Y$ and the number $X - Y$ is greater than $48$, determine how and how many ways we can make this sequence!!
2014 CHMMC (Fall), Individual
[b]p1.[/b] In the following $3$ by $3$ grid, $a, b, c$ are numbers such that the sum of each row is listed at the right and the sum of each column is written below it:
[center][img]https://cdn.artofproblemsolving.com/attachments/d/9/4f6fd2bc959c25e49add58e6e09a7b7eed9346.png[/img][/center]
What is $n$?
[b]p2.[/b] Suppose in your sock drawer of $14$ socks there are 5 different colors and $3$ different lengths present. One day, you decide you want to wear two socks that have both different colors and different lengths. Given only this information, what is the maximum number of choices you might have?
[b]p3.[/b] The population of Arveymuddica is $2014$, which is divided into some number of equal groups. During an election, each person votes for one of two candidates, and the person who was voted for by $2/3$ or more of the group wins. When neither candidate gets $2/3$ of the vote, no one wins the group. The person who wins the most groups wins the election. What should the size of the groups be if we want to minimize the minimum total number of votes required to win an election?
[b]p4.[/b] A farmer learns that he will die at the end of the year (day $365$, where today is day $0$) and that he has a number of sheep. He decides that his utility is given by ab where a is the money he makes by selling his sheep (which always have a fixed price) and $b$ is the number of days he has left to enjoy the profit; i.e., $365-k$ where $k$ is the day. If every day his sheep breed and multiply their numbers by $103/101$ (yes, there are small, fractional sheep), on which day should he sell them all?
[b]p5.[/b] Line segments $\overline{AB}$ and $\overline{AC}$ are tangent to a convex arc $BC$ and $\angle BAC = \frac{\pi}{3}$ . If $\overline{AB} = \overline{AC} = 3\sqrt3$, find the length of arc $BC$.
[b]p6.[/b] Suppose that you start with the number $8$ and always have two legal moves:
$\bullet$ Square the number
$\bullet$ Add one if the number is divisible by $8$ or multiply by $4$ otherwise
How many sequences of $4$ moves are there that return to a multiple of $8$?
[b]p7.[/b] A robot is shuffling a $9$ card deck. Being very well machined, it does every shuffle in exactly the same way: it splits the deck into two piles, one containing the $5$ cards from the bottom of the deck and the other with the $4$ cards from the top. It then interleaves the cards from the two piles, starting with a card from the bottom of the larger pile at the bottom of the new deck, and then alternating cards from the two piles while maintaining the relative order of each pile. The top card of the new deck will be the top card of the bottom pile. The robot repeats this shuffling procedure a total of n times, and notices that the cards are in the same order as they were when it started shuffling. What is the smallest possible value of $n$?
[b]p8.[/b] A secant line incident to a circle at points $A$ and $C$ intersects the circle's diameter at point $B$ with a $45^o$ angle. If the length of $AB$ is $1$ and the length of $BC$ is $7$, then what is the circle's radius?
[b]p9.[/b] If a complex number $z$ satisfies $z + 1/z = 1$, then what is $z^{96} + 1/z^{96}$?
[b]p10.[/b] Let $a, b$ be two acute angles where $\tan a = 5 \tan b$. Find the maximum possible value of $\sin (a - b)$.
[b]p11.[/b] A pyramid, represented by $SABCD$ has parallelogram $ABCD$ as base ($A$ is across from $C$) and vertex $S$. Let the midpoint of edge $SC$ be $P$. Consider plane $AMPN$ where$ M$ is on edge $SB$ and $N$ is on edge $SD$. Find the minimum value $r_1$ and maximum value $r_2$ of $\frac{V_1}{V_2}$ where $V_1$ is the volume of pyramid $SAMPN$ and $V_2$ is the volume of pyramid $SABCD$. Express your answer as an ordered pair $(r_1, r_2)$.
[b]p12.[/b] A $5 \times 5$ grid is missing one of its main diagonals. In how many ways can we place $5$ pieces on the grid such that no two pieces share a row or column?
[b]p13.[/b] There are $20$ cities in a country, some of which have highways connecting them. Each highway goes from one city to another, both ways. There is no way to start in a city, drive along the highways of the country such that you travel through each city exactly once, and return to the same city you started in. What is the maximum number of roads this country could have?
[b]p14.[/b] Find the area of the cyclic quadrilateral with side lengths given by the solutions to $$x^4-10x^3+34x^2- 45x + 19 = 0.$$
[b]p15.[/b] Suppose that we know $u_{0,m} = m^2 + m$ and $u_{1,m} = m^2 + 3m$ for all integers $m$, and that $$u_{n-1,m} + u_{n+1,m} = u_{n,m-1} + u_{n,m+1}$$
Find $u_{30,-5}$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2015 BMT Spring, 9
There exists a unique pair of positive integers $k,n$ such that $k$ is divisible by $6$, and $\sum_{i=1}^ki^2=n^2$. Find $(k,n)$.
2019 Yasinsky Geometry Olympiad, p1
A circle with center at the origin and radius $5$ intersects the abscissa in points $A$ and $B$. Let $P$ a point lying on the line $x = 11$, and the point $Q$ is the intersection point of $AP$ with this circle. We know what is the $Q$ point is the midpoint of the $AP$. Find the coordinates of the point $P$.
2007 India IMO Training Camp, 1
Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic.
[i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]
2021 Germany Team Selection Test, 3
Let $ABCD$ be a convex quadrilateral with $\angle ABC>90$, $CDA>90$ and $\angle DAB=\angle BCD$. Denote by $E$ and $F$ the reflections of $A$ in lines $BC$ and $CD$, respectively. Suppose that the segments $AE$ and $AF$ meet the line $BD$ at $K$ and $L$, respectively. Prove that the circumcircles of triangles $BEK$ and $DFL$ are tangent to each other.
$\emph{Slovakia}$
2016 Purple Comet Problems, 9
Find the sum of all perfect squares that divide 2016.
1998 Putnam, 5
Let $N$ be the positive integer with 1998 decimal digits, all of them 1; that is,
\[N=1111\cdots 11.\]
Find the thousandth digit after the decimal point of $\sqrt N$.
2015 NZMOC Camp Selection Problems, 7
Let $ABC$ be an acute-angled scalene triangle. Let $P$ be a point on the extension of $AB$ past $B$, and $Q$ a point on the extension of $AC$ past $C$ such that $BPQC$ is a cyclic quadrilateral. Let $N$ be the foot of the perpendicular from $A$ to $BC$. If $NP = NQ$ then prove that $N$ is also the centre of the circumcircle of $APQ$.
2011 ISI B.Math Entrance Exam, 7
If $a_1, a_2, \cdots, a_7$ are not necessarily distinct real numbers such that $1 < a_i < 13$ for all $i$, then show that we can choose three of them such that they are the lengths of the sides of a triangle.