Found problems: 85335
2021 Swedish Mathematical Competition, 2
Anna is out shopping for fruit. She observes that four oranges, three bananas and one lemon costs exactly the same as three oranges and two lemons (all prices are in whole kroner). Just then her friend Bengt calls, and Anna tells this to him. Bengt complains, that ''information is not enough for me to know how much each fruit costs''.
''No'', says Anna,' 'but three oranges and two lemons cost as many kroner as your mother is old''. Unfortunately, it's not enough either, but if she had been younger then the information would have been sufficient for you to be able to figure out what the fruits costs.
How old is Bengt's mother?
2009 Hong Kong TST, 4
In a school there are 2008 students. Students are members of certain committees. A committee has at most 1004 members and every two students join a common committee.
(a) Determine the smallest possible number of committees in the school.
(b) If it is further required that the union of any two committees consists of at most 1800 students, will your answer in (a) still hold?
2015 USA Team Selection Test, 2
A tournament is a directed graph for which every (unordered) pair of vertices has a single directed edge from one vertex to the other. Let us define a proper directed-edge-coloring to be an assignment of a color to every (directed) edge, so that for every pair of directed edges $\overrightarrow{uv}$ and $\overrightarrow{vw}$, those two edges are in different colors. Note that it is permissible for $\overrightarrow{uv}$ and $\overrightarrow{uw}$ to be the same color. The directed-edge-chromatic-number of a tournament is defined to be the minimum total number of colors that can be used in order to create a proper directed-edge-coloring. For each $n$, determine the minimum directed-edge-chromatic-number over all tournaments on $n$ vertices.
[i]Proposed by Po-Shen Loh[/i]
2021 AMC 10 Spring, 18
A fair 6-sided die is repeatedly rolled until an odd number appears. What is the probability that every even number appears at least once before the first occurrence of an odd number?
$\textbf{(A)}\ \frac{1}{120} \qquad\textbf{(B)}\ \frac{1}{32} \qquad\textbf{(C)}\frac{1}{20} \qquad\textbf{(D)}\ \frac{3}{20} \qquad\textbf{(E)}\ \frac{1}{6}$
1998 Slovenia Team Selection Test, 3
(a) Alenka has two jars, each with $6$ marbles labeled with numbers $1$ through $6$. She draws one marble from each jar at random. Denote by $p_n$ the probability that the sum of the labels of the two drawn marbles is $n$. Compute
pn for each $n \in N$.
(b) Barbara has two jars, each with $6$ marbles which are labeled with unknown numbers. The sets of labels in the two jars may differ and two marbles in the same jar can have the same label. If she draws one marble from each jar at random, the probability that the sum of the labels of the drawn marbles is $n$ equals the probability $p_n$ in Alenka’s case. Determine the labels of the marbles. Find all solution
2003 Tournament Of Towns, 3
For any integer $n+1,\ldots, 2n$ ($n$ is a natural number) consider its greatest odd divisor. Prove that the sum of all these divisors equals $n^2.$
2002 All-Russian Olympiad Regional Round, 10.5
Various points $x_1,..., x_n$ ($n \ge 3$) are randomly located on the $Ox$ axis. Construct all parabolas defined by the monic square trinomials and intersecting the Ox axis at these points (and not intersecting axis at other points). Let$ y = f_1$, $...$ , $y = f_m$ are functions that define these parabolas. Prove that the parabola $y = f_1 +...+ f_m$ intersects the $Ox$ axis at two points.
1988 IMO Longlists, 70
$ABC$ is a triangle, with inradius $r$ and circumradius $R.$ Show that: \[ \sin \left( \frac{A}{2} \right) \cdot \sin \left( \frac{B}{2} \right) + \sin \left( \frac{B}{2} \right) \cdot \sin \left( \frac{C}{2} \right) + \sin \left( \frac{C}{2} \right) \cdot \sin \left( \frac{A}{2} \right) \leq \frac{5}{8} + \frac{r}{4 \cdot R}. \]
EMCC Speed Rounds, 2021
[i]20 problems for 25 minutes.[/i]
[b]p1.[/b] Evaluate $20 \times 21 + 2021$.
[b]p2.[/b] Let points $A$, $B$, $C$, and $D$ lie on a line in that order. Given that $AB = 5CD$ and $BD = 2BC$, compute $\frac{AC}{BD}$.
[b]p3.[/b] There are $18$ students in Vincent the Bug's math class. Given that $11$ of the students take U.S. History, $15$ of the students take English, and $2$ of the students take neither, how many students take both U.S. History and English?
[b]p4.[/b] Among all pairs of positive integers $(x, y)$ such that $xy = 12$, what is the least possible value of $x + y$?
[b]p5.[/b] What is the smallest positive integer $n$ such that $n! + 1$ is composite?
[b]p6.[/b] How many ordered triples of positive integers $(a, b,c)$ are there such that $a + b + c = 6$?
[b]p7.[/b] Thomas orders some pizzas and splits each into $8$ slices. Hungry Yunseo eats one slice and then finds that she is able to distribute all the remaining slices equally among the $29$ other math club students. What is the fewest number of pizzas that Thomas could have ordered?
[b]p8.[/b] Stephanie has two distinct prime numbers $a$ and $b$ such that $a^2-9b^2$ is also a prime. Compute $a + b$.
[b]p9.[/b] Let $ABCD$ be a unit square and $E$ be a point on diagonal $AC$ such that $AE = 1$. Compute $\angle BED$, in degrees.
[b]p10.[/b] Sheldon wants to trace each edge of a cube exactly once with a pen. What is the fewest number of continuous strokes that he needs to make? A continuous stroke is one that goes along the edges and does not leave the surface of the cube.
[b]p11.[/b] In base $b$, $130_b$ is equal to $3n$ in base ten, and $1300_b$ is equal to $n^2$ in base ten. What is the value of $n$, expressed in base ten?
[b]p12.[/b] Lin is writing a book with $n$ pages, numbered $1,2,..., n$. Given that $n > 20$, what is the least value of $n$ such that the average number of digits of the page numbers is an integer?
[b]p13.[/b] Max is playing bingo on a $5\times 5$ board. He needs to fill in four of the twelve rows, columns, and main diagonals of his bingo board to win. What is the minimum number of boxes he needs to fill in to win?
[b]p14.[/b] Given that $x$ and $y$ are distinct real numbers such that $x^2 + y = y^2 + x = 211$, compute the value of $|x - y|$.
[b]p15.[/b] How many ways are there to place 8 indistinguishable pieces on a $4\times 4$ checkerboard such that there are two pieces in each row and two pieces in each column?
[b]p16.[/b] The Manhattan distance between two points $(a, b)$ and $(c, d)$ in the plane is defined to be $|a - c| + |b - d|$. Suppose Neil, Neel, and Nail are at the points $(5, 3)$, $(-2,-2)$ and $(6, 0)$, respectively, and wish to meet at a point $(x, y)$ such that their Manhattan distances to$ (x, y)$ are equal. Find $10x + y$.
[b]p17.[/b] How many positive integers that have a composite number of divisors are there between $1$ and $100$, inclusive?
[b]p18.[/b] Find the number of distinct roots of the polynomial $$(x - 1)(x - 2) ... (x - 90)(x^2 - 1)(x^2 - 2) ... (x^2 - 90)(x^4 - 1)(x^4 - 2)...(x^4 - 90)$$.
[b]p19.[/b] In triangle $ABC$, let $D$ be the foot of the altitude from $ A$ to $BC$. Let $P,Q$ be points on $AB$, $AC$, respectively, such that $PQ$ is parallel to $BC$ and $\angle PDQ = 90^o$. Given that $AD = 25$, $BD = 9$, and $CD = 16$, compute $111 \times PQ$.
[b]p20.[/b] The simplified fraction with numerator less than $1000$ that is closest but not equal to $\frac{47}{18}$ is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Compute $p$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 Postal Coaching, 5
Find all nonnegative integers $k, n$ which satisfy $2^{2k+1} + 9\cdot 2^k + 5 = n^2.$
2023 Estonia Team Selection Test, 5
Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that
$$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$
for all positive integers $n$. Show that $a_{2022}\leq 1$.
2018 Regional Olympiad of Mexico West, 3
A scalene acute triangle $ABC$ is drawn on the plane, in which $BC$ is the longest side. Points $P$ and $D$ are constructed, the first inside $ABC$ and the second outside, so that $\angle ABC = \angle CBD$, $\angle ACP = \angle BCD$ and that the area of triangle $ABC$ is equal to the area of quadrilateral $BPCD$. Prove that triangles $BCD$ and $ACP$ are similar.
2012 Greece Junior Math Olympiad, 1
Let $ABC$ be an acute angled triangle (with $AB<AC<BC$) inscribed in circle $c(O,R)$ (with center $O$ and radius $R$). Circle $c_1(A,AB)$ (with center $A$ and radius $AB$) intersects side $BC$ at point $D$ and the circumcircle $c(O,R)$ at point $E$. Prove that side $AC$ bisects angle $\angle DAE$.
1995 Polish MO Finals, 1
The positive reals $x_1, x_2, ... , x_n$ have harmonic mean $1$. Find the smallest possible value of $x_1 + \frac{x_2 ^2}{2} + \frac{x_3 ^3}{3} + ... + \frac{x_n ^n}{n}$.
2000 Tuymaada Olympiad, 1
Let $d(n)$ denote the number of positive divisors of $n$ and let
$e(n)=\left[2000\over n\right]$ for positive integer $n$. Prove that
\[d(1)+d(2)+\dots+d(2000)=e(1)+e(2)+\dots+e(2000).\]
2013 Regional Competition For Advanced Students, 1
For which integers between $2000$ and $2010$ (including) is the probability that a random divisor is smaller or equal $45$ the largest?
2014 Junior Regional Olympiad - FBH, 3
If $BK$ is an angle bisector of $\angle ABC$ in triangle $ABC$. Find angles of triangle $ABC$ if $BK=KC=2AK$
2021 Iran MO (2nd Round), 6
Is it possible to arrange 1400 positive integer ( not necessarily distinct ) ,at least one of them being 2021 , around a circle such that any number on this circle equals to the sum of gcd of the two previous numbers and two next numbers? for example , if $a,b,c,d,e$ are five consecutive numbers on this circle , $c=\gcd(a,b)+\gcd(d,e)$
2022-IMOC, C2
There are $2022$ stones on a table. At the start of the game, Teacher Tseng will choose a positive integer $m$ and let Ming and LTF play a game. LTF is the first to move, and he can remove at most $m$ stones on his round. Then the two people take turns removing stone, each round they must remove at least one stone, and they cannot remove more than twice the amount of stones the last person removed. The player unable to move loses. Find the smallest positive integer $m$ such that LTF has a winning strategy.
[i]Proposed by ltf0501[/i]
2017 Auckland Mathematical Olympiad, 5
The altitudes of triangle $ABC$ intersect at a point $H$.Find $\angle ACB$ if it is known that $AB = CH$.
2013 BMT Spring, P2
From a point $A$ construct tangents to a circle centered at point $O$, intersecting the circle at $P$ and $Q$ respectively. Let $M$ be the midpoint of $PQ$. If $K$ and $L$ are points on circle $O$ such that $K, L$, and $A$ are collinear, prove $\angle MKO = \angle MLO$.
2020 ASDAN Math Tournament, 2
Sam's cup has a $400$ mL mixture of coffee and milk tea. He pours $200$ mL into Ben's empty cup. Ben then adds 100mL of coee to his cup and stirs well. Finally, Ben pours $200$ mL out of his cup back into Sam's cup. If the mixture in Sam's cup is now $50\%$ milk tea, then how many milliliters of milk tea were in it originally?
2014 Indonesia MO Shortlist, C1
Is it possible to fill a $3 \times 3$ grid with each of the numbers $1,2,\ldots,9$ once each such that the sum of any two numbers sharing a side is prime?
2022 Singapore MO Open, Q1
For $\triangle ABC$ and its circumcircle $\omega$, draw the tangents at $B,C$ to $\omega$ meeting at $D$. Let the line $AD$ meet the circle with center $D$ and radius $DB$ at $E$ inside $\triangle ABC$. Let $F$ be the point on the extension of $EB$ and $G$ be the point on the segment $EC$ such that $\angle AFB=\angle AGE=\angle A$. Prove that the tangent at $A$ to the circumcircle of $\triangle AFG$ is parallel to $BC$.
[i]Proposed by 61plus[/i]
2012 ELMO Shortlist, 3
Find all ordered pairs of positive integers $(m,n)$ for which there exists a set $C=\{c_1,\ldots,c_k\}$ ($k\ge1$) of colors and an assignment of colors to each of the $mn$ unit squares of a $m\times n$ grid such that for every color $c_i\in C$ and unit square $S$ of color $c_i$, exactly two direct (non-diagonal) neighbors of $S$ have color $c_i$.
[i]David Yang.[/i]