This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2022 Purple Comet Problems, 1

Tags:
The $12$-sided polygon below was created by placing three $3$ × $3$ squares with their sides parallel so that vertices of two of the squares are at the center of the third square. Find the perimeter of this $12$-sided polygon.

2012 Online Math Open Problems, 26

Xavier takes a permutation of the numbers $1$ through $2011$ at random, where each permutation has an equal probability of being selected. He then cuts the permutation into increasing contiguous subsequences, such that each subsequence is as long as possible. Compute the expected number of such subsequences. [i]Author: Alex Zhu[/i] [hide="Clarification"]An increasing contiguous subsequence is an increasing subsequence all of whose terms are adjacent in the original sequence. For example, 1,3,4,5,2 has two maximal increasing contiguous subsequences: (1,3,4,5) and (2). [/hide]

2011 Putnam, B6

Let $p$ be an odd prime. Show that for at least $(p+1)/2$ values of $n$ in $\{0,1,2,\dots,p-1\},$ \[\sum_{k=0}^{p-1}k!n^k \quad \text{is not divisible by }p.\]

2021 AMC 12/AHSME Fall, 21

Tags:
For real numbers $x$, let \[P(x)=1+\cos (x)+i \sin (x)-\cos (2 x)-i \sin (2 x)+\cos (3 x)+i \sin (3 x)\] where $i=\sqrt{-1}$. For how many values of $x$ with $0 \leq x<2 \pi$ does $P(x)=0 ?$ $\textbf{(A)}\: 0\qquad\textbf{(B)} \: 1\qquad\textbf{(C)} \: 2\qquad\textbf{(D)} \: 3\qquad\textbf{(E)} \: 4$

Kvant 2022, M2707

Prove that infinitely many positive integers can be represented as $(a-1)/b + (b-1)/c + (c-1)/a$, where $a$, $b$ and $c$ are pairwise distinct positive integers greater than 1.

Russian TST 2014, P1

Tags: algebra
Nine numbers $a, b, c, \dots$ are arranged around a circle. All numbers of the form $a+b^c, \dots$ are prime. What is the largest possible number of different numbers among $a, b, c, \dots$?

2013 Stars Of Mathematics, 1

Prove that for any integers $a,b$, the equation $2abx^4 - a^2x^2 - b^2 - 1 = 0$ has no integer roots. [i](Dan Schwarz)[/i]

Kyiv City MO Juniors 2003+ geometry, 2010.9.4

In an acute-angled triangle $ABC$, the point $O$ is the center of the circumcircle, $CH$ is the height of the triangle, and the point $T$ is the foot of the perpendicular dropped from the vertex $C$ on the line $AO$. Prove that the line $TH$ passes through the midpoint of the side $BC$ .

2010 Serbia National Math Olympiad, 3

Let $A$ be an infinite set of positive integers. Find all natural numbers $n$ such that for each $a \in A$, \[a^n + a^{n-1} + \cdots + a^1 + 1 \mid a^{n!} + a^{(n-1)!} + \cdots   + a^{1!} + 1.\] [i]Proposed by Milos Milosavljevic[/i]

2016 CentroAmerican, 5

We say a number is irie if it can be written in the form $1+\dfrac{1}{k}$ for some positive integer $k$. Prove that every integer $n \geq 2$ can be written as the product of $r$ distinct irie numbers for every integer $r \geq n-1$.

2014 China Northern MO, 6

Tags: inequalities
Let $x,y,z,w $ be real numbers such that $x+2y+3z+4w=1$. Find the minimum of $x^2+y^2+z^2+w^2+(x+y+z+w)^2$.

2011 Purple Comet Problems, 6

Working alone, the expert can paint a car in one day, the amateur can paint a car in two days, and the beginner can paint a car in three days. If the three painters work together at these speeds to paint three cars, it will take them $\frac{m}{n}$ days where $m$ and $n$ are relatively prime positive integers. Find $m + n.$

2014 ASDAN Math Tournament, 18

Tags:
A two-digit positive integer is $\textit{primeable}$ if one of its digits can be deleted to produce a prime number. A two-digit positive integer that is prime, yet not primeable, is $\textit{unripe}$. Compute the total number of unripe integers.

1996 Moldova Team Selection Test, 5

Find all polynomials $P(X)$ of fourth degree with real coefficients that verify the properties: [b]a)[/b] $P(-x)=P(x), \forall x\in\mathbb{R};$ [b]b)[/b] $P(x)\geq0, \forall x\in\mathbb{R};$ [b]c)[/b] $P(0)=1;$ [b]d)[/b] $P(X)$ has exactly two local minimums $x_1$ and $x_2$ such that $|x_1-x_2|=2.$

2012 Online Math Open Problems, 12

Tags:
A [i]cross-pentomino[/i] is a shape that consists of a unit square and four other unit squares each sharing a different edge with the first square. If a cross-pentomino is inscribed in a circle of radius $R,$ what is $100R^2$? [i]Author: Ray Li[/i]

2006 Singapore MO Open, 2

Show that any representation of 1 as the sum of distinct reciprocals of numbers drawn from the arithmetic progression $\{2,5,8,11,...\}$ such as given in the following example must have at least eight terms: \[1=\frac{1}{2}+\frac{1}{5}+\frac{1}{8}+\frac{1}{11}+\frac{1}{20}+\frac{1}{41}+\frac{1}{110}+\frac{1}{1640}\]

2001 Bosnia and Herzegovina Team Selection Test, 6

Prove that there exists infinitely many positive integers $n$ such that equation $(x+y+z)^3=n^2xyz$ has solution $(x,y,z)$ in set $\mathbb{N}^3$

2005 JBMO Shortlist, 4

Let $ABC$ be an isosceles triangle $(AB=AC)$ so that $\angle A< 2 \angle B$ . Let $D,Z $ points on the extension of height $AM$ so that $\angle CBD = \angle A$ and $\angle ZBA = 90^\circ$. Let $E$ the orthogonal projection of $M$ on height $BF$, and let $K$ the orthogonal projection of $Z$ on $AE$. Prove that $ \angle KDZ = \angle KDB = \angle KZB$.

2012 AMC 8, 12

What is the units digit of $13^{2012}$ ? $\textbf{(A)}\hspace{.05in}1 \qquad \textbf{(B)}\hspace{.05in}3 \qquad \textbf{(C)}\hspace{.05in}5 \qquad \textbf{(D)}\hspace{.05in}7 \qquad \textbf{(E)}\hspace{.05in}9 $

2020 Taiwan TST Round 3, 2

There are $N$ monsters, each with a positive weight. On each step, two of the monsters are merged into one, whose weight is the sum of weights for the two original monsters. At the end, all monsters will be merged into one giant monster. During this process, if at any mergence, one of the two monsters has a weight greater than $2.020$ times the other monster's weight, we will call this mergence [b]dangerous[/b]. The dangerous level of a sequence of mergences is the number of dangerous mergence throughout its process. Prove that, no matter how the weights being distributed among the monsters, "for every step, merge the lightest two monsters" is always one of the merging sequences that obtain the minimum possible dangerous level. [i]Proposed by houkai[/i]

1961 Czech and Slovak Olympiad III A, 4

Consider a unit square $ABCD$ and a (variable) equilateral triangle $XYZ$ such that $X, Z$ lie on rays $AB, DC,$ respectively, and $Y$ lies on segment $AD$. Compute the area of triangle $XYZ$ in terms of $x=AX$ and determine its maximum and minimum.

1987 IMO, 3

Let $n\ge2$ be an integer. Prove that if $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le\sqrt{n\over3}$, then $k^2+k+n$ is prime for all integers $k$ such that $0\le k\le n-2$.

V Soros Olympiad 1998 - 99 (Russia), 10.8

In how many ways can you choose several numbers from the numbers $1,2,3,..., 11$ so that among the selected numbers there are not three consecutive numbers?

2019 Brazil National Olympiad, 5

In the picture below, a white square is surrounded by four black squares and three white squares. They are surrounded by seven black squares. [img]https://i.stack.imgur.com/Dalmm.png[/img] What is the maximum number of white squares that can be surrounded by $ n $ black squares?

2024 Canadian Mathematical Olympiad Qualification, 4

A sequence $\{a_i\}$ is given such that $a_1 = \frac13$ and for all positive integers $n$ $$a_{n+1} =\frac{a^2_n}{a^2_n - a_n + 1}.$$ Prove that $$\frac12 - \frac{1}{3^{2^{n-1}}} < a_1 + a_2 +... + a_n <\frac12 - \frac{1}{3^{2^n}} ,$$ for all positive integers $n$.