This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2007 Germany Team Selection Test, 3

In triangle $ ABC$ we have $ a \geq b$ and $ a \geq c.$ Prove that the ratio of circumcircle radius to incircle diameter is at least as big as the length of the centroidal axis $ s_a$ to the altitude $ a_a.$ When do we have equality?

2012 Princeton University Math Competition, B2

Tags: algebra
Define a sequence $a_n$ such that $a_n = a_{n-1} - a_{n-2}$. Let $a_1 = 6$ and $a_2 = 5$. Find $\Sigma_{n=1}^{1000}a_n$.

IV Soros Olympiad 1997 - 98 (Russia), 9.10

On the plane there is an image of a circle with a marked center. Let an arbitrary angle be drawn on this plane. Using one ruler, construct the bisector of this angle.

1988 Putnam, B5

Tags:
For positive integers $n$, let $M_n$ be the $2n+1$ by $2n+1$ skew-symmetric matrix for which each entry in the first $n$ subdiagonals below the main diagonal is 1 and each of the remaining entries below the main diagonal is -1. Find, with proof, the rank of $M_n$. (According to one definition, the rank of a matrix is the largest $k$ such that there is a $k \times k$ submatrix with nonzero determinant.) One may note that \begin{align*} M_1 &= \left( \begin{array}{ccc} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{array}\right) \\ M_2 &= \left( \begin{array}{ccccc} 0 & -1 & -1 & 1 & 1 \\ 1 & 0 & -1 & -1 & 1 \\ 1 & 1 & 0 & -1 & -1 \\ -1 & 1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 1 & 0 \end{array} \right). \end{align*}

2024 Thailand Mathematical Olympiad, 7

Let $m$ and $n$ be positive integers for which $n\leq m\leq 2n$. Find the number of all complex solutions $(z_1,z_2,...,z_m)$ that satisfy $$z_1^7+z_2^7+...+z_m^7=n$$ Such that $z_k^3-2z_k^2+2z_k-1=0$ for all $k=1,2,...,m$.

2001 All-Russian Olympiad, 2

Tags:
Let $A_1, A_2, ... , A_{100}$ be subsets of a line, each a union of $100$ pairwise disjoint closed segments. Prove that the intersection of all hundred sets is a union of at most $9901$ disjoint closed segments.

2005 Switzerland - Final Round, 5

Tweaking a convex $n$-gon means the following: choose two adjacent sides $AB$ and $BC$ and replaces them with the line segment $AM$, $MN$, $NC$, where $M \in AB$ and $N \in BC$ are arbitrary points inside these segments. In other words, you cut off a corner and get an $(n+1)$-corner. Starting from a regular hexagon $P_6$ with area $1$, by continuous Tweaks a sequence $P_6,P_7,P_8, ...$ convex polygons. Show that Area of $​​P_n$ for all $n\ge 6$ greater than $\frac1 2$ is, regardless of how tweaks takes place.

VMEO III 2006, 12.4

For every positive integer $n$, the symbol $a_n/b_n$ is the simplest form of the fraction $1+1/2+...+1/n$. Prove that for every pair of positive integers $(M, N)$ we can always find a positive integer $m$ where $(a_n, N) = 1$ for all $n = m, m + 1, ...,m + M$.

2004 Poland - Second Round, 1

Find all positive integers $n$ which have exactly $\sqrt{n}$ positive divisors.

2017 AMC 8, 13

Tags:
Peter, Emma, and Kyler played chess with each other. Peter won 4 games and lost 2 games. Emma won 3 games and lost 3 games. If Kyler lost 3 games, how many games did he win? $\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4$

2013 AMC 10, 22

Tags:
The regular octagon $ABCDEFGH$ has its center at $J$. Each of the vertices and the center are to be associated with one of the digits $1$ through $9$, with each digit used once, in such a way that the sums of the numbers on the lines $AJE$, $BJF$, $CJG$, and $DJH$ are equal. In how many ways can this be done? $\textbf{(A) }384\qquad \textbf{(B) }576\qquad \textbf{(C) }1152\qquad \textbf{(D) }1680\qquad \textbf{(E) }3546\qquad$ [asy] size(175); defaultpen(linewidth(0.8)); path octagon; string labels[]={"A","B","C","D","E","F","G","H","I"}; for(int i=0;i<=7;i=i+1) { pair vertex=dir(135-45/2-45*i); octagon=octagon--vertex; label("$"+labels[i]+"$",vertex,dir(origin--vertex)); } draw(octagon--cycle); dot(origin); label("$J$",origin,dir(0)); [/asy]

2013 Online Math Open Problems, 20

A positive integer $n$ is called [i]mythical[/i] if every divisor of $n$ is two less than a prime. Find the unique mythical number with the largest number of divisors. [i]Proposed by Evan Chen[/i]

2013 AMC 12/AHSME, 22

Tags: vieta , logarithm
Let $m>1$ and $n>1$ be integers. Suppose that the product of the solutions for $x$ of the equation \[8(\log_n x)(\log_m x) - 7 \log_n x - 6 \log_m x - 2013 = 0\] is the smallest possible integer. What is $m+n$? ${ \textbf{(A)}\ 12\qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 24\qquad\textbf{(D}}\ 48\qquad\textbf{(E)}\ 272 $

Novosibirsk Oral Geo Oly IX, 2023.7

Tags: geometry , angle
Triangle $ABC$ is given with angles $\angle ABC = 60^o$ and $\angle BCA = 100^o$. On the sides AB and AC, the points $D$ and $E$ are chosen, respectively, in such a way that $\angle EDC = 2\angle BCD = 2\angle CAB$. Find the angle $\angle BED$.

MOAA Gunga Bowls, 2023.5

Tags:
Andy creates a 3 sided dice with a side labeled $7$, a side labeled $17$, and a side labeled $27$. He then asks Anthony to roll the dice $3$ times. The probability that the product of Anthony's rolls is greater than $2023$ can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [i]Proposed by Andy Xu[/i]

2001 Hong kong National Olympiad, 4

There are $212$ points inside or on a given unit circle. Prove that there are at least $2001$ pairs of points having distances at most $1$.

2007 France Team Selection Test, 3

A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.

2011 AMC 12/AHSME, 16

Tags: probability
Each vertex of convex pentagon $ABCDE$ is to be assigned a color. There are $6$ colors to choose from, and the ends of each diagonal must have different colors. How many different colorings are possible? $ \textbf{(A)}\ 2520 \qquad \textbf{(B)}\ 2880 \qquad \textbf{(C)}\ 3120 \qquad \textbf{(D)}\ 3250 \qquad \textbf{(E)}\ 3750 $

2006 Moldova MO 11-12, 3

On each of the 2006 cards a natural number is written. Cards are placed arbitrarily in a row. 2 players take in turns a card from any end of the row until all the cards are taken. After that each player calculates sum of the numbers written of his cards. If the sum of the first player is not less then the sum of the second one then the first player wins. Show that there's a winning strategy for the first player.

1980 IMO Shortlist, 20

Let $S$ be a set of 1980 points in the plane such that the distance between every pair of them is at least 1. Prove that $S$ has a subset of 220 points such that the distance between every pair of them is at least $\sqrt{3}.$

2001 Bundeswettbewerb Mathematik, 3

Let $ ABC$ an acute triangle with circumcircle center $ O.$ The line $ (BO)$ intersects the circumcircle again in $ D,$ and the extension of the altitude from $ A$ intersects the circle in $ E.$ Prove that the quadrilateral $ BECD$ and the triangle $ ABC$ have the same area.

2015 Miklos Schweitzer, 2

Let $\{x_n\}$ be a Van Der Corput series,that is,if the binary representation of $n$ is $\sum a_{i}2^{i}$ then $x_n=\sum a_i2^{-i-1}$.Let $V$ be the set of points on the plane that have the form $(n,x_n)$.Let $G$ be the graph with vertex set $V$ that is connecting any two points $(p,q)$ if there is a rectangle $R$ which lies in parallel position with the axes and $R\cap V= \{p,q\}$.Prove that the chromatic number of $G$ is finite.

2024 Switzerland Team Selection Test, 10

Tags: geometry
Let $ABC$ be a triangle with $AC > BC,$ let $\omega$ be the circumcircle of $\triangle ABC,$ and let $r$ be its radius. Point $P$ is chosen on $\overline{AC}$ such taht $BC=CP,$ and point $S$ is the foot of the perpendicular from $P$ to $\overline{AB}$. Ray $BP$ mets $\omega$ again at $D$. Point $Q$ is chosen on line $SP$ such that $PQ = r$ and $S,P,Q$ lie on a line in that order. Finally, let $E$ be a point satisfying $\overline{AE} \perp \overline{CQ}$ and $\overline{BE} \perp \overline{DQ}$. Prove that $E$ lies on $\omega$.

2020 Taiwan APMO Preliminary, P6

Let $a,b,c$ be positive reals. Find the minimum value of $$\dfrac{13a+13b+2c}{2a+2b}+\dfrac{24a-b+13c}{2b+2c}+\dfrac{(-a+24b+13c)}{2c+2a}$$. (1)What is the minimum value? (2)If the minimum value occurs when $(a,b,c)=(a_0,b_0,c_0)$,then find $\frac{b_0}{a_0}+\frac{c_0}{b_0}$.

1996 Akdeniz University MO, 1

Solve the equation for real numbers $x,y,z$ $$(x-y+z)^2=x^2-y^2+z^2$$