This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 AIME Problems, 10

For distinct complex numbers $z_1,z_2,\dots,z_{673}$, the polynomial \[ (x-z_1)^3(x-z_2)^3 \cdots (x-z_{673})^3 \] can be expressed as $x^{2019} + 20x^{2018} + 19x^{2017}+g(x)$, where $g(x)$ is a polynomial with complex coefficients and with degree at most $2016$. The value of \[ \left| \sum_{1 \le j <k \le 673} z_jz_k \right| \] can be expressed in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2010 Belarus Team Selection Test, 2.2

Let $p$ be a positive prime integer, $S(p)$ be the number of triples $(x,y,z)$ such that $x,y,z\in\{0,1,..., p-1\}$ and $x^2+y^2+z^2$ is divided by $p$. Prove that $S(p) \ge 2p- 1$. (I. Bliznets)

2024 Canada National Olympiad, 5

Tags: geometry
Initially, three non-collinear points, $A$, $B$, and $C$, are marked on the plane. You have a pencil and a double-edged ruler of width $1$. Using them, you may perform the following operations: [list] [*]Mark an arbitrary point in the plane. [*]Mark an arbitrary point on an already drawn line. [*]If two points $P_1$ and $P_2$ are marked, draw the line connecting $P_1$ and $P_2$. [*]If two non-parallel lines $l_1$ and $l_2$ are drawn, mark the intersection of $l_1$ and $l_2$. [*]If a line $l$ is drawn, draw a line parallel to $l$ that is at distance $1$ away from $l$ (note that two such lines may be drawn). [/list] Prove that it is possible to mark the orthocenter of $ABC$ using these operations.

2022 IFYM, Sozopol, 1

Let $p$ and $q$ be given prime numbers and $S$ be a subset of ${1,2,3,\dots ,p-2,p-1}$. Prove that the number of elements in the set $A=\{ (x_1,x_2,…,x_q ):x_i\in S,\sum_{i=1}^q x_i \equiv 0(mod\: p)\}$ is multiple of $q$.

2021 Sharygin Geometry Olympiad, 9.8

A quadrilateral $ABCD$ is circumscribed around a circle $\omega$ centered at $I$. Lines $AC$ and $BD$ meet at point $P$, lines $AB$ and $CD$ meet at point $£$, lines $AD$ and $BC$ meet at point $F$. Point $K$ on the circumcircle of triangle $E1F$ is such that $\angle IKP = 90^o$. The ray $PK$ meets $\omega$ at point $Q$. Prove that the circumcircle of triangle $EQF$ touches $\omega$.

2007 Chile National Olympiad, 2

Given a $\triangle ABC$, determine which is the circle with the smallest area that contains it.

2013 Princeton University Math Competition, 6

Tags: geometry , rotation
Draw an equilateral triangle with center $O$. Rotate the equilateral triangle $30^\circ, 60^\circ, 90^\circ$ with respect to $O$ so there would be four congruent equilateral triangles on each other. Look at the diagram. If the smallest triangle has area $1$, the area of the original equilateral triangle could be expressed as $p+q\sqrt r$ where $p,q,r$ are positive integers and $r$ is not divisible by a square greater than $1$. Find $p+q+r$.

2023 BMT, 22

Let $d_n(x)$ be the $n$-th decimal digit (after the decimal point) of $x$. For example, $d_3(\pi) = 1$ because $\pi = 3.14\underline{1}5...$ For a positive integer $k$, let $f(k) = p^4_k$, where $p_k$ is the $k$-th prime number. Compute the value of $$\sum^{2023}_{i=1} d_{f(i)} \left( \frac{1}{1275}\right).$$

2017 India PRMO, 14

Suppose $x$ is a positive real number such that $\{x\}, [x]$ and $x$ are in a geometric progression. Find the least positive integer $n$ such that $x^n > 100$. (Here $[x]$ denotes the integer part of $x$ and $\{x\} = x - [x]$.)

2012 IMO Shortlist, C6

The [i]liar's guessing game[/i] is a game played between two players $A$ and $B$. The rules of the game depend on two positive integers $k$ and $n$ which are known to both players. At the start of the game $A$ chooses integers $x$ and $N$ with $1 \le x \le N.$ Player $A$ keeps $x$ secret, and truthfully tells $N$ to player $B$. Player $B$ now tries to obtain information about $x$ by asking player $A$ questions as follows: each question consists of $B$ specifying an arbitrary set $S$ of positive integers (possibly one specified in some previous question), and asking $A$ whether $x$ belongs to $S$. Player $B$ may ask as many questions as he wishes. After each question, player $A$ must immediately answer it with [i]yes[/i] or [i]no[/i], but is allowed to lie as many times as she wants; the only restriction is that, among any $k+1$ consecutive answers, at least one answer must be truthful. After $B$ has asked as many questions as he wants, he must specify a set $X$ of at most $n$ positive integers. If $x$ belongs to $X$, then $B$ wins; otherwise, he loses. Prove that: 1. If $n \ge 2^k,$ then $B$ can guarantee a win. 2. For all sufficiently large $k$, there exists an integer $n \ge (1.99)^k$ such that $B$ cannot guarantee a win. [i]Proposed by David Arthur, Canada[/i]

2021 Cyprus JBMO TST, 2

Find all pairs of natural numbers $(\alpha,\beta)$ for which, if $\delta$ is the greatest common divisor of $\alpha,\beta$, and $\varDelta$ is the least common multiple of $\alpha,\beta$, then \[ \delta + \Delta = 4(\alpha + \beta) + 2021\]

2019 Iran Team Selection Test, 3

In triangle $ABC$, $M,N$ and $P$ are midpoints of sides $BC,CA$ and $AB$. Point $K$ lies on segment $NP$ so that $AK$ bisects $\angle BKC$. Lines $MN,BK$ intersects at $E$ and lines $MP,CK$ intersects at $F$. Suppose that $H$ be the foot of perpendicular line from $A$ to $BC$ and $L$ the second intersection of circumcircle of triangles $AKH, HEF$. Prove that $MK,EF$ and $HL$ are concurrent. [i]Proposed by Alireza Dadgarnia[/i]

1975 Chisinau City MO, 104

Prove that $x^2+y^2 \ge 2\sqrt2 (x-y)$ if $xy = 1$

2024 Bulgarian Autumn Math Competition, 9.3,9.4

$9.3$ A natural number is called square-free, if it is not divisible by the square of any prime number. For a natural number $a$, we consider the number $f(a) = a^{a+1} + 1$. Prove that: a) if $a$ is even, then $f(a)$ is not square-free b) there exist infinitely many odd $a$ for which $f(a)$ is not square-free $9.4$ We will call a generalized $2n$-parallelogram a convex polygon with $2n$ sides, so that, traversed consecutively, the $k$th side is parallel and equal to the $(n+k)$th side for $k=1, 2, ... , n$. In a rectangular coordinate system, a generalized parallelogram is given with $50$ vertices, each with integer coordinates. Prove that its area is at least $300$.

2014 India IMO Training Camp, 3

In a triangle $ABC$, points $X$ and $Y$ are on $BC$ and $CA$ respectively such that $CX=CY$,$AX$ is not perpendicular to $BC$ and $BY$ is not perpendicular to $CA$.Let $\Gamma$ be the circle with $C$ as centre and $CX$ as its radius.Find the angles of triangle $ABC$ given that the orthocentres of triangles $AXB$ and $AYB$ lie on $\Gamma$.

2019 Romania National Olympiad, 1

Let $a>0$ and $\mathcal{F} = \{f:[0,1] \to \mathbb{R} : f \text{ is concave and } f(0)=1 \}.$ Determine $$\min_{f \in \mathcal{F}} \bigg\{ \left( \int_0^1 f(x)dx\right)^2 - (a+1) \int_0^1 x^{2a}f(x)dx \bigg\}.$$

2012 Today's Calculation Of Integral, 809

For $a>0$, denote by $S(a)$ the area of the part bounded by the parabolas $y=\frac 12x^2-3a$ and $y=-\frac 12x^2+2ax-a^3-a^2$. Find the maximum area of $S(a)$.

2009 India IMO Training Camp, 11

Find all integers $ n\ge 2$ with the following property: There exists three distinct primes $p,q,r$ such that whenever $ a_1,a_2,a_3,\cdots,a_n$ are $ n$ distinct positive integers with the property that at least one of $ p,q,r$ divides $ a_j - a_k \ \forall 1\le j\le k\le n$, one of $ p,q,r$ divides all of these differences.

2021 South Africa National Olympiad, 6

Jacob and Laban take turns playing a game. Each of them starts with the list of square numbers $1, 4, 9, \dots, 2021^2$, and there is a whiteboard in front of them with the number $0$ on it. Jacob chooses a number $x^2$ from his list, removes it from his list, and replaces the number $W$ on the whiteboard with $W + x^2$. Laban then does the same with a number from his list, and the repeat back and forth until both of them have no more numbers in their list. Now every time that the number on the whiteboard is divisible by $4$ after a player has taken his turn, Jacob gets a sheep. Jacob wants to have as many sheep as possible. What is the greatest number $K$ such that Jacob can guarantee to get at least $K$ sheep by the end of the game, no matter how Laban plays?

2008 Harvard-MIT Mathematics Tournament, 4

Tags: function
The function $ f$ satisfies \[f(x) \plus{} f(2x \plus{} y) \plus{} 5xy \equal{} f(3x \minus{} y) \plus{} 2x^2 \plus{} 1\] for all real numbers $ x$, $ y$. Determine the value of $ f(10)$.

1994 Turkey MO (2nd round), 6

The incircle of triangle $ABC$ touches $BC$ at $D$ and $AC$ at $E$. Let $K$ be the point on $CB$ with $CK=BD$, and $L$ be the point on $CA$ with $AE=CL$. Lines $AK$ and $BL$ meet at $P$. If $Q$ is the midpoint of $BC$, $I$ the incenter, and $G$ the centroid of $\triangle ABC$, show that: $(a)$ $IQ$ and $AK$ are parallel, $(b)$ the triangles $AIG$ and $QPG$ have equal area.

2007 Gheorghe Vranceanu, 2

Let be a function $ f:(0,\infty )\longrightarrow\mathbb{R} $ satisfying the following two properties: $ \text{(i) } 2\lfloor x \rfloor \le f(x) \le 2 \lfloor x \rfloor +2,\quad\forall x\in (0,\infty ) $ $ \text{(ii) } f\circ f $ is monotone Can $ f $ be non-monotone? Justify.

2010 IFYM, Sozopol, 6

There are 2 pizzerias in a town, with 2010 pizzas each. Two scientists $A$ and $B$ are taking turns ($A$ is first), where on each turn one can eat as many pizzas as he likes from one of the pizzerias or exactly one pizza from each of the two. The one that has eaten the last pizza is the winner. Which one of them is the winner, provided that they both use the best possible strategy?

2025 AIME, 15

Tags: algebra , function
Let \[f(x)=\frac{(x-18)(x-72)(x-98)(x-k)}{x}.\] There exist exactly three positive real values of $k$ such that $f$ has a minimum at exactly two real values of $x$. Find the sum of these three values of $k$.

1996 Bosnia and Herzegovina Team Selection Test, 6

Let $a$ and $b$ be two integers which are coprime and let $n$ be one variable integer. Determine probability that number of solutions $(x,y)$, where $x$ and $y$ are nonnegative integers, of equation $ax+by=n$ is $\left\lfloor \frac{n}{ab} \right\rfloor + 1$