This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2012 Hanoi Open Mathematics Competitions, 12

Tags: geometry
In an isosceles triangle ABC with the base AB given a point M $\in$ BC: Let O be the center of its circumscribed circle and S be the center of the inscribed circle in ABC and SM // AC: Prove that OM perpendicular BS.

1996 Mexico National Olympiad, 4

For which integers $n\ge 2$ can the numbers $1$ to $16$ be written each in one square of a squared $4\times 4$ paper such that the $8$ sums of the numbers in rows and columns are all different and divisible by $n$?

2011 Romania National Olympiad, 1

Find all real numbers $x, y,z,t \in [0, \infty)$ so that $$x + y + z \le t, \,\,\, x^2 + y^2 + z^2 \ge t \,\,\, and \,\,\,x^3 + y^3 + z^3 \le t.$$

2010 China National Olympiad, 3

Suppose $a_1,a_2,a_3,b_1,b_2,b_3$ are distinct positive integers such that \[(n \plus{} 1)a_1^n \plus{} na_2^n \plus{} (n \minus{} 1)a_3^n|(n \plus{} 1)b_1^n \plus{} nb_2^n \plus{} (n \minus{} 1)b_3^n\] holds for all positive integers $n$. Prove that there exists $k\in N$ such that $ b_i \equal{} ka_i$ for $ i \equal{} 1,2,3$.

2005 Today's Calculation Of Integral, 24

Find the minimum value of $\int_0^{\pi} (x-y)^2 (\sin x)|\cos x|dx$.

2021 239 Open Mathematical Olympiad, 7

Given is a grid with $2$ rows and $120$ columns, such that each cell has a number from the set $1, 2, ..., 120$. It is known that in each column, the upper number in it is smaller than the lower number, and in each row, the numbers are in non-strict increasing order from left to right. Prove that the number of these tables is multiple of $239$.

2016 Kurschak Competition, 3

If $p,q\in\mathbb{R}[x]$ satisfy $p(p(x))=q(x)^2$, does it follow that $p(x)=r(x)^2$ for some $r\in\mathbb{R}[x]$?

1998 Romania National Olympiad, 2

Let $(a_n)_{n \ge 1}$ be a sequence of real numbers satisfying the properties: [list=1] [*] the sequence $x_n=\sum\limits_{k=1}^n a_k^2$ is convergent; [*] the sequence $y_n=\sum\limits_{k=1}^n a_k$ is unbounded. [/list] Prove that the sequence $(b_n)_{n \ge 1}$ given by $b_n=\{y_n\}$ is divergent. Note: $\{ x \}$ denotes the fractional part of $x.$

2022 Thailand TST, 2

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

2013 CHMMC (Fall), 8

Two kids $A$ and $B$ play a game as follows: from a box containing $n$ marbles ($n > 1$), they alternately take some marbles for themselves, such that: 1. $A$ goes first. 2. The number of marbles taken by $A$ in his first turn, denoted by $k$, must be between $1$ and $n - 1$, inclusive. 3. The number of marbles taken in a turn by any player must be between $1$ and $k$, inclusive. The winner is the one who takes the last marble. Determine all natural numbers $n$ for which $A$ has a winning strategy

1991 All Soviet Union Mathematical Olympiad, 545

The numbers $1, 2, 3, ... , n$ are written on a blackboard (where $n \ge 3$). A move is to replace two numbers by their sum and non-negative difference. A series of moves makes all the numbers equal $k$. Find all possible $k$

2006 IMO, 3

Determine the least real number $M$ such that the inequality \[|ab(a^{2}-b^{2})+bc(b^{2}-c^{2})+ca(c^{2}-a^{2})| \leq M(a^{2}+b^{2}+c^{2})^{2}\] holds for all real numbers $a$, $b$ and $c$.

2014 Bundeswettbewerb Mathematik, 1

Anja has to write $2014$ integers on the board such that arithmetic mean of any of the three numbers is among those $2014$ numbers. Show that this is possible only when she writes nothing but $2014$ equal integers.

2012 IFYM, Sozopol, 7

A quadrilateral $ABCD$ is inscribed in a circle with center $O$. Let $A_1 B_1 C_1 D_1$ be the image of $ABCD$ after rotation with center $O$ and angle $\alpha \in (0,90^\circ)$. The points $P,Q,R$ and $S$ are intersections of $AB$ and $A_1 B_1$, $BC$ and $B_1 C_1$, $CD$ and $C_1 D_1$, and $DA$ and $D_1 A_1$. Prove that $PQRS$ is a parallelogram.

1953 Czech and Slovak Olympiad III A, 1

Find the locus of all numbers $z\in\mathbb C$ in complex plane satisfying $$z+\bar z=a\cdot|z|,$$ where $a\in\mathbb R$ is given.

2018 Irish Math Olympiad, 7

Let $a, b, c$ be the side lengths of a triangle. Prove that $2 (a^3 + b^3 + c^3) < (a + b + c) (a^2 + b^2 + c^2) \le 3 (a^3 + b^3 + c^3)$

2013 IFYM, Sozopol, 7

Tags: geometry
Let $O$ be the center of the inscribed circle of $\Delta ABC$ and point $D$ be the middle point of $AB$. If $\angle AOD=90^\circ$, prove that $AB+BC=3AC$.

2007 Romania Team Selection Test, 1

Let \[f = X^{n}+a_{n-1}X^{n-1}+\ldots+a_{1}X+a_{0}\] be an integer polynomial of degree $n \geq 3$ such that $a_{k}+a_{n-k}$ is even for all $k \in \overline{1,n-1}$ and $a_{0}$ is even. Suppose that $f = gh$, where $g,h$ are integer polynomials and $\deg g \leq \deg h$ and all the coefficients of $h$ are odd. Prove that $f$ has an integer root.

2019 India IMO Training Camp, P2

Let $n$ be a natural number. A tiling of a $2n \times 2n$ board is a placing of $2n^2$ dominos (of size $2 \times 1$ or $1 \times 2$) such that each of them covers exactly two squares of the board and they cover all the board.Consider now two [i]sepearate tilings[/i] of a $2n \times 2n$ board: one with red dominos and the other with blue dominos. We say two squares are red neighbours if they are covered by the same red domino in the red tiling; similarly define blue neighbours. Suppose we can assign a non-zero integer to each of the squares such that the number on any square equals the difference between the numbers on it's red and blue neighbours i.e the number on it's red neigbhbour minus the number on its blue neighbour. Show that $n$ is divisible by $3$ [i] Proposed by Tejaswi Navilarekallu [/i]

2008 Korean National Olympiad, 8

For fixed positive integers $s, t$, define $a_n$ as the following. $a_1 = s, a_2 = t$, and $\forall n \ge 1$, $a_{n+2} = \lfloor \sqrt{a_n+(n+2)a_{n+1}+2008} \rfloor$. Prove that the solution set of $a_n \not= n$, $n \in \mathbb{N}$ is finite.

2021 Princeton University Math Competition, 3

Let $f(N) = N \left( \frac{9}{10} \right)^N$ , and let $\frac{m}{n}$ denote the maximum value of $f(N)$, as $N$ ranges over the positive integers. If $m$ and $n$ are relatively prime positive integers, find the remainder when $m + n$ is divided by $1000$.

2007 Junior Balkan Team Selection Tests - Romania, 2

Solve in positive integers: $(x^{2}+2)(y^{2}+3)(z^{2}+4)=60xyz$.

2007 Stanford Mathematics Tournament, 15

A number $ x$ is uniformly chosen on the interval $ [0,1]$, and $ y$ is uniformly randomly chosen on $ [\minus{}1,1]$. Find the probability that $ x>y$.

1971 IMO Longlists, 24

Tags: trigonometry
Let $A, B,$ and $C$ denote the angles of a triangle. If $\sin^2 A + \sin^2 B + \sin^2 C = 2$, prove that the triangle is right-angled.

2010 Flanders Math Olympiad, 1

How many zeros does $101^{100} - 1$ end with?