This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2010 Thailand Mathematical Olympiad, 4

Let $\vartriangle ABC$ be an equilateral triangle, and let $M$ and $N$ be points on $AB$ and $AC$, respectively, so that $AN = BM$ and $3MB = AB$. Lines $CM$ and $BN$ intersect at $O$. Find $\angle AOB$.

1998 Miklós Schweitzer, 8

Tags: topology
X is a compact T2 space such that every subspace of cardinality $\aleph_1$ is first countable. Prove that X is first countable.

2010 Victor Vâlcovici, 3

$ A',B',C' $ are the feet of the heights of an acute-angled triangle $ ABC. $ Calculate $$ \frac{\text{area} (ABC)}{\text{area}\left( A'B'C'\right)} , $$ knowing that $ ABC $ and $ A'B'C' $ have the same center of mass. [i]Carmen[/i] and [i]Viorel Botea[/i]

2006 VTRMC, Problem 3

Hey, This problem is from the VTRMC 2006. 3. Recall that the Fibonacci numbers $ F(n)$ are defined by $ F(0) \equal{} 0$, $ F(1) \equal{} 1$ and $ F(n) \equal{} F(n \minus{} 1) \plus{} F(n \minus{} 2)$ for $ n \geq 2$. Determine the last digit of $ F(2006)$ (e.g. the last digit of 2006 is 6). As, I and a friend were working on this we noticed an interesting relationship when writing the Fibonacci numbers in "mod" notation. Consider the following, 01 = 1 mod 10 01 = 1 mod 10 02 = 2 mod 10 03 = 3 mod 10 05 = 5 mod 10 08 = 6 mod 10 13 = 3 mod 10 21 = 1 mod 10 34 = 4 mod 10 55 = 5 mod 10 89 = 9 mod 10 Now, consider that between the first appearance and second apperance of $ 5 mod 10$, there is a difference of five terms. Following from this we see that the third appearance of $ 5 mod 10$ occurs at a difference 10 terms from the second appearance. Following this pattern we can create the following relationships. $ F(55) \equal{} F(05) \plus{} 5({2}^{2})$ This is pretty much as far as we got, any ideas?

2013 ELMO Shortlist, 8

There are 20 people at a party. Each person holds some number of coins. Every minute, each person who has at least 19 coins simultaneously gives one coin to every other person at the party. (So, it is possible that $A$ gives $B$ a coin and $B$ gives $A$ a coin at the same time.) Suppose that this process continues indefinitely. That is, for any positive integer $n$, there exists a person who will give away coins during the $n$th minute. What is the smallest number of coins that could be at the party? [i]Proposed by Ray Li[/i]

2017 Romania EGMO TST, P1

Consider five points on a circle. For every three of them, we draw the perpendicular from the centroid of the triangle they determine to the line through the remaining two points. Prove that the ten lines thus formed are concurrent.

1997 National High School Mathematics League, 13

Tags: trigonometry
$x\geq y\geq z\geq \frac{\pi}{12},x+y+z=\frac{\pi}{2}$, find the maximum and minumum value of $\cos x\sin y\cos z$.

2000 District Olympiad (Hunedoara), 2

Let $ z_1,z_2,z_3\in\mathbb{C} $ such that $\text{(i)}\quad \left|z_1\right| = \left|z_2\right| = \left|z_3\right| = 1$ $\text{(ii)}\quad z_1+z_2+z_3\neq 0 $ $\text{(iii)}\quad z_1^2 +z_2^2+z_3^2 =0. $ Show that $ \left| z_1^3+z_2^3+z_3^3\right| = 1. $

2012 Princeton University Math Competition, A3

Let the sequence $\{x_n\}$ be defined by $x_1 \in \{5, 7\}$ and, for $k \ge 1, x_{k+1} \in \{5^{x_k} , 7^{x_k} \}$. For example, the possible values of $x_3$ are $5^{5^5}, 5^{5^7}, 5^{7^5}, 5^{7^7}, 7^{5^5}, 7^{5^7}, 7^{7^5}$, and $7^{7^7}$. Determine the sum of all possible values for the last two digits of $x_{2012}$.

2002 Estonia Team Selection Test, 3

In a certain country there are $10$ cities connected by a network of one-way nonstop flights so that it is possible to fly (using one or more flights) from any city to any other. Let $n$ be the least number of flights needed to complete a trip starting from one of the cities, visiting all others and returning to the starting point. Find the greatest possible value of $n$.

2014 Czech-Polish-Slovak Junior Match, 5

A square is given. Lines divide it into $n$ polygons. What is he the largest possible sum of the internal angles of all polygons?

1987 Federal Competition For Advanced Students, P2, 1

The sides $ a,b$ and the bisector of the included angle $ \gamma$ of a triangle are given. Determine necessary and sufficient conditions for such triangles to be constructible and show how to reconstruct the triangle.

Russian TST 2014, P1

Tags: geometry
Finitely many lines are given, which pass through some point $P{}.$ Prove that these lines can be coloured red and blue and one can find a point $Q\neq P$ such that the sum of the distances from $Q{}$ to the red lines is equal to the sum of the distance from $Q{}$ to the blue lines.

1999 Abels Math Contest (Norwegian MO), 1a

Tags: algebra , function
Find a function $f$ such that $f(t^2 +t +1) = t$ for all real $t \ge 0$

2001 Nordic, 3

Determine the number of real roots of the equation ${x^8 -x^7 + 2x^6- 2x^5 + 3x^4 - 3x^3 + 4x^2 - 4x + \frac{5}{2}= 0}$

2021 Indonesia TST, G

Tags: geometry
let $ w_1 $ and $ w_2 $ two circles such that $ w_1 \cap w_2 = \{ A , B \} $ let $ X $ a point on $ w_2 $ and $ Y $ on $ w_1 $ such that $ BY \bot BX $ suppose that $ O $ is the center of $ w_1 $ and $ X' = w_2 \cap OX $ now if $ K = w_2 \cap X'Y $ prove $ X $ is the midpoint of arc $ AK $

2013 National Olympiad First Round, 32

Tags:
How many $10$-digit positive integers containing only the numbers $1,2,3$ can be written such that the first and the last digits are same, and no two consecutive digits are same? $ \textbf{(A)}\ 768 \qquad\textbf{(B)}\ 642 \qquad\textbf{(C)}\ 564 \qquad\textbf{(D)}\ 510 \qquad\textbf{(E)}\ 456 $

2018 Moscow Mathematical Olympiad, 6

We divide $999\times 999$ square into the angles with $3$ cells. Prove, that number of ways is divided by $2^7$.( Angle is a figure, that we can get if we remove one cell from $2 \times 2$ square).

2018 AMC 10, 14

Tags:
What is the greatest integer less than or equal to $$\frac{3^{100}+2^{100}}{3^{96}+2^{96}}?$$ $ \textbf{(A) }80\qquad \textbf{(B) }81 \qquad \textbf{(C) }96 \qquad \textbf{(D) }97 \qquad \textbf{(E) }625\qquad $

1972 IMO Longlists, 19

Tags: algebra
Let $S$ be a subset of the real numbers with the following properties: $(i)$ If $x \in S$ and $y \in S$, then $x - y \in S$; $(ii)$ If $x \in S$ and $y \in S$, then $xy \in S$; $(iii)$ $S$ contains an exceptional number $x'$ such that there is no number $y$ in $S$ satisfying $x'y + x' + y = 0$; $(iv)$ If $x \in S$ and $x \neq x'$ , there is a number $y$ in $S$ such that $xy+x+y = 0$. Show that $(a)$ $S$ has more than one number in it; $(b)$ $x' \neq -1$ leads to a contradiction; $(c)$ $x \in S$ and $x \neq 0$ implies $1/x \in S$.

1958 AMC 12/AHSME, 8

Which of these four numbers $ \sqrt{\pi^2},\,\sqrt[3]{.8},\,\sqrt[4]{.00016},\,\sqrt[3]{\minus{}1}\cdot \sqrt{(.09)^{\minus{}1}}$, is (are) rational: $ \textbf{(A)}\ \text{none}\qquad \textbf{(B)}\ \text{all}\qquad \textbf{(C)}\ \text{the first and fourth}\qquad \textbf{(D)}\ \text{only the fourth}\qquad \textbf{(E)}\ \text{only the first}$

PEN M Problems, 19

A sequence with first two terms equal $1$ and $24$ respectively is defined by the following rule: each subsequent term is equal to the smallest positive integer which has not yet occurred in the sequence and is not coprime with the previous term. Prove that all positive integers occur in this sequence.

2010 Romanian Master of Mathematics, 4

Determine whether there exists a polynomial $f(x_1, x_2)$ with two variables, with integer coefficients, and two points $A=(a_1, a_2)$ and $B=(b_1, b_2)$ in the plane, satisfying the following conditions: (i) $A$ is an integer point (i.e $a_1$ and $a_2$ are integers); (ii) $|a_1-b_1|+|a_2-b_2|=2010$; (iii) $f(n_1, n_2)>f(a_1, a_2)$ for all integer points $(n_1, n_2)$ in the plane other than $A$; (iv) $f(x_1, x_2)>f(b_1, b_2)$ for all integer points $(x_1, x_2)$ in the plane other than $B$. [i]Massimo Gobbino, Italy[/i]

1991 Arnold's Trivium, 90

Calculate the sum of matrix commutators $[A, [B, C]] + [B, [C, A]] + [C, [A, B]]$, where $[A, B] = AB-BA$

2017 District Olympiad, 1

Let $ A_1,B_1,C_1 $ be the feet of the heights of an acute triangle $ ABC. $ On the segments $ B_1C_1,C_1A_1,A_1B_1, $ take the points $ X,Y, $ respectively, $ Z, $ such that $$ \left\{\begin{matrix}\frac{C_1X}{XB_1} =\frac{b\cos\angle BCA}{c\cos\angle ABC} \\ \frac{A_1Y}{YC_1} =\frac{c\cos\angle BAC}{a\cos\angle BCA} \\ \frac{B_1Z}{ZA_1} =\frac{a\cos\angle ABC}{b\cos\angle BAC} \end{matrix}\right. . $$ Show that $ AX,BY,CZ, $ are concurrent.