This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2000 AMC 10, 11

Two different prime numbers between $ 4$ and $ 18$ are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained? $ \textbf{(A)}\ 21 \qquad \textbf{(B)}\ 60\qquad \textbf{(C)}\ 119 \qquad \textbf{(D)}\ 180\qquad \textbf{(E)}\ 231$

2023 Thailand October Camp, 5

Let $n>1$ be a positive integer. Find the number of binary strings $(a_1, a_2, \ldots, a_n)$, such that the number of indices $1\leq i \leq n-1$ such that $a_i=a_{i+1}=0$ is equal to the number of indices $1 \leq i \leq n-1$, such that $a_i=a_{i+1}=1$.

2006 Stanford Mathematics Tournament, 1

Given $ \triangle{ABC}$, where $ A$ is at $ (0,0)$, $ B$ is at $ (20,0)$, and $ C$ is on the positive $ y$-axis. Cone $ M$ is formed when $ \triangle{ABC}$ is rotated about the $ x$-axis, and cone $ N$ is formed when $ \triangle{ABC}$ is rotated about the $ y$-axis. If the volume of cone $ M$ minus the volume of cone $ N$ is $ 140\pi$, find the length of $ \overline{BC}$.

2005 Morocco TST, 2

Tags: inequalities
Let $a,b,c$ be positive real numbers. Prove the inequality \[\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c+\frac{4(a-b)^2}{a+b+c}.\] When does equality occur?

2022 Polish MO Finals, 4

Find all triples $(a,b,c)$ of real numbers satisfying the system $\begin{cases} a^3+b^2c=ac \\ b^3+c^2a=ba \\ c^3+a^2b=cb \end{cases}$

2016 BMT Spring, 14

Three circles of radius $1$ are inscribed in a square of side length $s$, such that the circles do not overlap or coincide with each other. What is the minimum $s$ where such a configuration is possible?

2000 AMC 12/AHSME, 17

A circle centered at $ O$ has radius $ 1$ and contains the point $ A$. Segment $ AB$ is tangent to the circle at $ A$ and $ \angle{AOB} \equal{} \theta$. If point $ C$ lies on $ \overline{OA}$ and $ \overline{BC}$ bisects $ \angle{ABO}$, then $ OC \equal{}$ [asy]import olympiad; unitsize(2cm); defaultpen(fontsize(8pt)+linewidth(.8pt)); labelmargin=0.2; dotfactor=3; pair O=(0,0); pair A=(1,0); pair B=(1,1.5); pair D=bisectorpoint(A,B,O); pair C=extension(B,D,O,A); draw(Circle(O,1)); draw(O--A--B--cycle); draw(B--C); label("$O$",O,SW); dot(O); label("$\theta$",(0.1,0.05),ENE); dot(C); label("$C$",C,S); dot(A); label("$A$",A,E); dot(B); label("$B$",B,E);[/asy] $ \textbf{(A)}\ \sec^2\theta \minus{} \tan\theta \qquad \textbf{(B)}\ \frac {1}{2} \qquad \textbf{(C)}\ \frac {\cos^2\theta}{1 \plus{} \sin\theta} \qquad \textbf{(D)}\ \frac {1}{1 \plus{} \sin\theta} \qquad \textbf{(E)}\ \frac {\sin\theta}{\cos^2\theta}$

2010 AMC 10, 25

Let $ a>0$, and let $ P(x)$ be a polynomial with integer coefficients such that \[ P(1)\equal{}P(3)\equal{}P(5)\equal{}P(7)\equal{}a\text{, and}\] \[ P(2)\equal{}P(4)\equal{}P(6)\equal{}P(8)\equal{}\minus{}a\text{.}\] What is the smallest possible value of $ a$? $ \textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!$

2022 LMT Fall, 2

Ada rolls a standard $4$-sided die $5$ times. The probability that the die lands on at most two distinct sides can be written as $ \frac{A}{B}$ for relatively prime positive integers $A$ and $B$. Find $1000A +B$

1957 AMC 12/AHSME, 13

Tags:
A rational number between $ \sqrt{2}$ and $ \sqrt{3}$ is: $ \textbf{(A)}\ \frac{\sqrt{2} \plus{} \sqrt{3}}{2} \qquad \textbf{(B)}\ \frac{\sqrt{2} \cdot \sqrt{3}}{2}\qquad \textbf{(C)}\ 1.5\qquad \textbf{(D)}\ 1.8\qquad \textbf{(E)}\ 1.4$

2022 MIG, 18

Tags:
If the six-digit number $\underline{2}\, \underline{0}\, \underline{2} \, \underline{1} \, \underline{a} \, \underline{b}$ is divisible by $9$, what is the greatest possible value of $a \cdot b$? $\textbf{(A) }18\qquad\textbf{(B) }20\qquad\textbf{(C) }36\qquad\textbf{(D) }40\qquad\textbf{(E) }42$

1989 IMO, 1

Prove that in the set $ \{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $ A_i, \{i \equal{} 1,2, \ldots, 117\}$ such that [b]i.)[/b] each $ A_i$ contains 17 elements [b]ii.)[/b] the sum of all the elements in each $ A_i$ is the same.

2017 Thailand TSTST, 1

1.1 Let $f(A)$ denote the difference between the maximum value and the minimum value of a set $A$. Find the sum of $f(A)$ as $A$ ranges over the subsets of $\{1, 2, \dots, n\}$. 1.2 All cells of an $8 × 8$ board are initially white. A move consists of flipping the color (white to black or vice versa) of cells in a $1\times 3$ or $3\times 1$ rectangle. Determine whether there is a finite sequence of moves resulting in the state where all $64$ cells are black. 1.3 Prove that for all positive integers $m$, there exists a positive integer $n$ such that the set $\{n, n + 1, n + 2, \dots , 3n\}$ contains exactly $m$ perfect squares.

1975 IMO Shortlist, 4

Let $a_1, a_2, \ldots , a_n, \ldots $ be a sequence of real numbers such that $0 \leq a_n \leq 1$ and $a_n - 2a_{n+1} + a_{n+2} \geq 0$ for $n = 1, 2, 3, \ldots$. Prove that \[0 \leq (n + 1)(a_n - a_{n+1}) \leq 2 \qquad \text{ for } n = 1, 2, 3, \ldots\]

2017 Romania Team Selection Test, P4

Let $ABCD$ be a convex quadrilateral and let $P$ and $Q$ be variable points inside this quadrilateral so that $\angle APB=\angle CPD=\angle AQB=\angle CQD$. Prove that the lines $PQ$ obtained in this way all pass through a fixed point , or they are all parallel.

1982 Putnam, B4

Let $n_1,n_2,\ldots,n_s$ be distinct integers such that $$(n_1+k)(n_2+k)\cdots(n_s+k)$$is an integral multiple of $n_1n_2\cdots n_s$ for every integer $k$. For each of the following assertions give a proof or a counterexample: $(\text a)$ $|n_i|=1$ for some $i$ $(\text b)$ If further all $n_i$ are positive, then $$\{n_1,n_2,\ldots,n_2\}=\{1,2,\ldots,s\}.$$

2024 Belarus Team Selection Test, 4.4

Given positive integers $n$ and $k \leq n$. Consider an equilateral triangular board with side $n$, which consists of circles: in the first (top) row there is one circle, in the second row there are two circles, $\ldots$ , in the bottom row there are $n$ circles (see the figure below). Let us place checkers on this board so that any line parallel to a side of the triangle (there are $3n$ such lines) contains no more than $k$ checkers. Denote by $T(k, n)$ the largest possible number of checkers in such a placement. [img]https://i.ibb.co/bJjjK1M/Image2.jpg[/img] a) Prove that the following upper bound is true: $$T(k,n) \leq \lfloor \frac{k(2n+1)}{3} \rfloor$$ b) Find $T(1,n)$ and $T(2,n)$ [i]D. Zmiaikou[/i]

2022 Nigerian Senior MO Round 2, Problem 3

In triangle $ABC$, $AD$ and $AE$ trisect $\angle BAC$. The lengths of $BD, DE $ and $EC$ are $1, 3 $ and $5$ respectively. Find the length of $AC$.

2005 JHMT, 8

Tags: geometry
The square $DEAF$ is constructed inside the $30^o-60^o-90^o$ triangle $ABC$, with the hypotenuse $BC = 4$, $D$ on side $BC$, E on side $AC$, and F on side $AB$. What is the side length of the square?

2020 Princeton University Math Competition, B6

Billy the baker makes a bunch of loaves of bread every day, and sells them in bundles of size $1, 2$, or $3$. On one particular day, there are $375$ orders, $125$ for each bundle type. As such, Billy goes ahead and makes just enough loaves of bread to meet all the orders. Whenever Billy makes loaves, some get burned, and are not sellable. For nonnegative i less than or equal to the total number of loaves, the probability that exactly i loaves are sellable to customers is inversely proportional to $2^i$ (otherwise, it’s $0$). Once he makes the loaves, he distributes out all of the sellable loaves of bread to some subset of these customers (each of whom will only accept their desired bundle of bread), without worrying about the order in which he gives them out. If the expected number of ways Billy can distribute the bread is of the form $\frac{a^b}{2^c-1}$, find $a + b + c$.

1941 Moscow Mathematical Olympiad, 085

Prove that the remainder after division of the square of any prime $p > 3$ by $12$ is equal to $1$.

2010 CIIM, Problem 3

Tags:
A set $X\subset \mathbb{R}$ has dimension zero if, for any $\epsilon > 0$ there exists a positive integer $k$ and intervals $I_1,I_2,...,I_k$ such that $X \subset I_1 \cup I_2 \cup \cdots \cup I_k$ with $\sum_{j=1}^k |I_j|^{\epsilon} < \epsilon$. Prove that there exist sets $X,Y \subset [0,1]$ both of dimension zero, such that $X+Y = [0,2].$

2011 Mathcenter Contest + Longlist, 4 sl4

At the $69$ Thailand-Yaranaikian meeting attended by $96$ Thai delegates and a number (unknown) from the Yaranakian country. Some time after the meeting took place, the meeting also discovered something amazing that happened in this meeting!! That is, regardless of whether we select at least $69$ of Thai participants and select all the Yaranikian country participants who are known to Thais in the initial selection group, there is at least $1$ person fo form a minority. They found in that minority, there was always $1$ more Yaranikhians than Thais. Prove that there must be at least $28$ of the Yaranaikian attendees who know the Thai delegates. (Note: In this meeting, none of the attendees were half-breeds. Thai-Yara Nikian) [i](tatari/nightmare)[/i]

2014 PUMaC Algebra B, 8

Tags:
Given that $x_{n+2}=\dfrac{20x_{n+1}}{14x_n}$, $x_0=25$, $x_1=11$, it follows that $\sum_{n=0}^\infty\dfrac{x_{3n}}{2^n}=\dfrac pq$ for some positive integers $p$, $q$ with $GCD(p,q)=1$. Find $p+q$.

2018 Purple Comet Problems, 8

Let $a$ and $b$ be positive integers such that $2a - 9b + 18ab = 2018$. Find $b - a$.