Found problems: 85335
2025 Ukraine National Mathematical Olympiad, 8.3
Initially, there are $14$ numbers written on the board - zeros and ones. Every minute, Anton chooses half of the numbers on the board and adds $1$ to each of them, while Mykhailo multiplies all the other numbers by $8$. At some point (possibly initially), all the numbers on the board become equal. How many ones could have been on the board initially?
[i]Proposed by Oleksii Masalitin[/i]
2020 Switzerland - Final Round, 6
Let $n \ge 2$ be an integer. Consider the following game: Initially, $k$ stones are distributed among the $n^2$ squares of an $n\times n$ chessboard. A move consists of choosing a square containing at least as many stones as the number of its adjacent squares (two squares are adjacent if they share a common edge) and moving one stone from this square to each of its adjacent squares. Determine all positive integers $k$ such that:
(a) There is an initial configuration with $k$ stones such that no move is possible.
(b) There is an initial configuration with $k$ stones such that an infinite sequence of moves is possible.
PEN G Problems, 24
Let $\{a_{n}\}_{n \ge 1}$ be a sequence of positive numbers such that \[a_{n+1}^{2}= a_{n}+1, \;\; n \in \mathbb{N}.\] Show that the sequence contains an irrational number.
1954 AMC 12/AHSME, 19
If the three points of contact of a circle inscribed in a triangle are joined, the angles of the resulting triangle:
$ \textbf{(A)}\ \text{are always equal to }60^\circ \\
\textbf{(B)}\ \text{are always one obtuse angle and two unequal acute angles} \\
\textbf{(C)}\ \text{are always one obtuse angle and two equal acute angles} \\
\textbf{(D)}\ \text{are always acute angles} \\
\textbf{(E)}\ \text{are always unequal to each other}$
2021 Iran MO (3rd Round), 1
An acute triangle $ABC$ is given. Let $D$ be the foot of altitude dropped for $A$. Tangents from $D$ to circles with diameters $AB$ and $AC$ intersects with the said circles at $K$ and $L$, in respective. Point $S$ in the plane is given so that $\angle ABC + \angle ABS = \angle ACB + \angle ACS = 180^\circ$. Prove that $A, K, L$ and $S$ lie on a circle.
2023 Junior Balkan Team Selection Tests - Moldova, 7
Every point on a circle is coloured in blue or yellow such there is at least a point of each color.
Prove that for every colouring of the circle there is always an isosceles triangle inscribed inside the circle
1) with all vertexes of the same colour.
2) with vertexes of both colours.
For every colouring of the circle is there an equilateral triangle inscribed inside the circle
3) with all vertexes of the same colour?
4) with vertexes of both colours?
Novosibirsk Oral Geo Oly IX, 2017.2
You are given a convex quadrilateral $ABCD$. It is known that $\angle CAD = \angle DBA = 40^o$, $\angle CAB = 60^o$, $\angle CBD = 20^o$. Find the angle $\angle CDB $.
2014 Singapore MO Open, 3
Let $0<a_1<a_2<\cdots <a_n$ be real numbers. Prove that
\[\left (\frac{1}{1+a_1}+\frac{1}{1+a_2}+\cdots +\frac{1}{1+a_n}\right )^2 \leq \frac{1}{a_1}+\frac{1}{a_2-a_1}+\cdots +\frac{1}{a_n-a_{n-1}}.\]
2024-25 IOQM India, 10
Determine the number of positive integral values of $p$ for which there exists a triangle with sides $a,b,$ and $c$ which satisfy $$a^2 + (p^2 + 9)b^2 + 9c^2 - 6ab - 6pbc = 0.$$
2018 Korea USCM, 7
Suppose a $3\times 3$ matrix $A$ satisfies $\mathbf{v}^t A \mathbf{v} > 0$ for any vector $\mathbf{v} \in\mathbb{R}^3 -\{0\}$. (Note that $A$ may not be a symmetric matrix.)
(1) Prove that $\det(A)>0$.
(2) Consider diagonal matrix $D=\text{diag}(-1,1,1)$. Prove that there's exactly one negative real among eigenvalues of $AD$.
1998 Brazil National Olympiad, 1
Two players play a game as follows. The first player chooses two non-zero integers A and B. The second player forms a quadratic with A, B and 1998 as coefficients (in any order). The first player wins iff the equation has two distinct rational roots. Show that the first player can always win.
2015 Princeton University Math Competition, 13
We define $\lfloor x \rfloor$ as the largest integer less than or equal to $x$. What is
\[ \left\lfloor \frac{5^{2017015}}{5^{2015}+7} \right\rfloor \mod 1000?\]
2021 Malaysia IMONST 1, Juniors
IMONST = [b]I[/b]nternational [b]M[/b]athematical [b]O[/b]lympiad [b]N[/b]ational [b]S[/b]election [b]T[/b]est
Malaysia 2021 Round 1 Juniors
Time: 2.5 hours [hide=Rules]
$\bullet$ For each problem you have to submit the answer only. The answer to each problem is a non-negative integer.
$\bullet$ No mark is deducted for a wrong answer.
$\bullet$ The maximum number of points is (1 + 2 + 3 + 4) x 5 = 50 points.[/hide]
[b]Part A[/b] (1 point each)
p1. Adam draws $7$ circles on a paper, with radii $ 1$ cm, $2$ cm, $3$ cm, $4$ cm, $5$ cm, $6$ cm, and $7$ cm. The circles do not intersect each other. He colors some circles completely red, and the rest of the circles completely blue. What is the minimum possible difference (in cm$^2$) between the total area of the red circles and the total area of the blue circles?
p2. The number $2021$ has a special property that the sum of any two neighboring digits in the number is a prime number ($2 + 0 = 2$, $0 + 2 = 2$, and $2 + 1 = 3$ are all prime numbers). Among numbers from $2021$ to $2041$, how many of them have this property?
p3. Clarissa opens a pet shop that sells three types of pets: goldshes, hamsters, and parrots. The pets inside the shop together have a total of $14$ wings, $24$ heads, and $62$ legs. How many goldshes are there inside Clarissa's shop?
p4. A positive integer $n$ is called special if $n$ is divisible by $4$, $n+1$ is divisible by $5$, and $n + 2$ is divisible by $6$. How many special integers smaller than $1000$ are there?
p5. Suppose that this decade begins on $ 1$ January $2020$ (which is a Wednesday) and the next decade begins on $ 1$ January $2030$. How many Wednesdays are there in this decade?
[b]Part B[/b] (2 points each)
p6. Given an isosceles triangle $ABC$ with $AB = AC$. Let D be a point on $AB$ such that $CD$ is the bisector of $\angle ACB$. If $CB = CD$, what is $\angle ADC$, in degrees?
p7. Determine the number of isosceles triangles with the following properties:
all the sides have integer lengths (in cm), and the longest side has length $21$ cm.
p8. Haz marks $k$ points on the circumference of a circle. He connects every point to every other point with straight lines. If there are $210$ lines formed, what is $k$?
p9. What is the smallest positive multiple of $24$ that can be written using digits $4$ and $5$ only?
p10. In a mathematical competition, there are $2021$ participants. Gold, silver, and bronze medals are awarded to the winners as follows:
(i) the number of silver medals is at least twice the number of gold medals,
(ii) the number of bronze medals is at least twice the number of silver medals,
(iii) the number of all medals is not more than $40\%$ of the number of participants.
The competition director wants to maximize the number of gold medals to be awarded based on the given conditions. In this case, what is the maximum number of bronze medals that can be awarded?
[b]Part C[/b] (3 points each)
p11. Dinesh has several squares and regular pentagons, all with side length $ 1$. He wants to arrange the shapes alternately to form a closed loop (see diagram). How many pentagons would Dinesh need to do so?
[img]https://cdn.artofproblemsolving.com/attachments/8/9/6345d7150298fe26cfcfba554656804ed25a6d.jpg
[/img]
p12. If $x +\frac{1}{x} = 5$, what is the value of $x^3 +\frac{1}{x^3} $ ?
p13. There are $10$ girls in a class, all with different heights. They want to form a queue so that no girl stands directly between two girls shorter than her. How many ways are there to form the queue?
p14. The two diagonals of a rhombus have lengths with ratio $3 : 4$ and sum $56$. What is the perimeter of the rhombus?
p15. How many integers $n$ (with $1 \le n \le 2021$) have the property that $8n + 1$ is a perfect square?
[b]Part D[/b] (4 points each)
p16. Given a segment of a circle, consisting of a straight edge and an arc. The length of the straight edge is $24$. The length between the midpoint of the straight edge and the midpoint of the arc is $6$. Find the radius of the circle.
p17. Sofia has forgotten the passcode of her phone. She only remembers that it has four digits and that the product of its digits is $18$. How many passcodes satisfy these conditions?
p18. A tree grows in the following manner. On the first day, one branch grows out of the ground. On the second day, a leaf grows on the branch and the branch tip splits up into two new branches. On each subsequent day, a new leaf grows on every existing branch, and each branch tip splits up into two new branches. How many leaves does the tree have at the end of the tenth day?
p19. Find the sum of (decimal) digits of the number $(10^{2021} + 2021)^2$?
p20. Determine the number of integer solutions $(x, y, z)$, with $0 \le x, y, z \le 100$, for the equation$$(x - y)^2 + (y + z)^2 = (x + y)^2 + (y - z)^2.$$
2005 Taiwan TST Round 1, 2
Let $ABCD$ be a convex quadrilateral. Is it possible to find a point $P$ such that the segments drawn between $P$ and the midpoints of the sides of $ABCD$ divide the quadrilateral into four sections of equal area? If $P$ exists, is it unique?
2017 Iran MO (2nd Round), 3
Let $n$ be a natural number divisible by $3$. We have a $n \times n$ table and each square is colored either black or white. Suppose that for all $m \times m$ sub-tables from the table ($m > 1$), the number of black squares is not more than white squares. Find the maximum number of black squares.
2007 JBMO Shortlist, 3
Let the inscribed circle of the triangle $\vartriangle ABC$ touch side $BC$ at $M$ , side $CA$ at $N$ and side $AB$ at $P$ . Let $D$ be a point from $\left[ NP \right]$ such that $\frac{DP}{DN}=\frac{BD}{CD}$ . Show that $DM \perp PN$ .
2019 AMC 8, 18
The faces on each of two fair dice are numbered 1, 2, 3, 5, 7, and 8. When the two dice are tossed, what is the probability that their sum will be an even number?
$\textbf{(A) }\frac{4}{9}\qquad\textbf{(B) }\frac{1}{2}\qquad\textbf{(C) }\frac{5}{9}\qquad\textbf{(D) }\frac{3}{5}\qquad\textbf{(E) }\frac{2}{3}$
2007 Today's Calculation Of Integral, 212
For integers $k\ (0\leq k\leq 5)$, positive numbers $m,\ n$ and real numbers $a,\ b$, let $f(k)=\int_{-\pi}^{\pi}(\sin kx-a\sin mx-b\sin nx)^{2}\ dx$,
$p(k)=\frac{5!}{k!(5-k)!}\left(\frac{1}{2}\right)^{5}, \ E=\sum_{k=0}^{5}p(k)f(k)$. Find the values of $m,\ n,\ a,\ b$ for which $E$ is minimized.
2011 USA TSTST, 3
Prove that there exists a real constant $c$ such that for any pair $(x,y)$ of real numbers, there exist relatively prime integers $m$ and $n$ satisfying the relation
\[
\sqrt{(x-m)^2 + (y-n)^2} < c\log (x^2 + y^2 + 2).
\]
2016 Iranian Geometry Olympiad, 5
Let $ABCD$ be a convex quadrilateral with these properties: $\angle ADC = 135^o$ and $\angle ADB - \angle ABD = 2\angle DAB = 4\angle CBD$.
If $BC = \sqrt2 CD$ , prove that $AB = BC + AD$.
by Mahdi Etesami Fard
KoMaL A Problems 2018/2019, A. 742
Convex quadrilateral $ABCD$ is inscribed in circle $\Omega$. Its sides $AD$ and $BC$ intersect at point $E$. Let $M$ and $N$ be the midpoints of the circle arcs $AB$ and $CD$ not containing the other vertices, and let $I$, $J$, $K$, $L$ denote the incenters of triangles $ABD$, $ABC$, $BCD$, $CDA$, respectively. Suppose $\Omega$ intersects circles $IJM$ and $KLN$ for the second time at points $U \neq M$ and $V \neq N$. Show that the points $E$, $U$, and $V$ are collinear.
2002 Tournament Of Towns, 7
[list]
[*] A power grid with the shape of a $3\times 3$ lattice with $16$ nodes (vertices of the lattice) joined by wires (along the sides of squares. It may have happened that some of the wires have burned out. In one test technician can choose any two nodes and check if electrical current circulates between them (i.e there is a chain of intact wires joining the chosen nodes) . Technicial knows that current will circulate from any node to another node. What is the least number of tests required to demonstrate this?
[*] Previous problem for the grid of $5\times 5$ lattice.[/list]
2023 OMpD, 3
Let $m$ and $n$ be positive integers integers such that $2m + 1 < n$, and let $S$ be the set of the $2^n$ subsets of $\{1,2,\ldots,n\}$. Prove that we can place the elements of $S$ on a circle, so that for any two adjacent elements $A$ and $B$, the set $A \Delta B$ has exactly $2m + 1$ elements.
[b]Note[/b]: $A \Delta B = (A \cup B) - (A \cap B)$ is the set of elements that are exclusively in $A$ or exclusively in $B$.
2014 German National Olympiad, 2
For a positive integer $n$, let $y_n$ be the number of $n$-digit positive integers containing only the digits $2,3,5, 7$ and which do not have a $5$ directly to the right of a $2.$ If $r\geq 1$ and $m\geq 2$ are integers, prove that $y_{m-1}$ divides $y_{rm-1}.$
2009 Korea National Olympiad, 1
Let $I, O$ be the incenter and the circumcenter of triangle $ABC$, and $D,E,F$ be the circumcenters of triangle $ BIC, CIA, AIB$. Let $ P, Q, R$ be the midpoints of segments $ DI, EI, FI $. Prove that the circumcenter of triangle $PQR $, $M$, is the midpoint of segment $IO$.