Found problems: 85335
2025 USAJMO, 6
Let $S$ be a set of integers with the following properties:
[list]
[*] $\{ 1, 2, \dots, 2025 \} \subseteq S$.
[*] If $a, b \in S$ and $\gcd(a, b) = 1$, then $ab \in S$.
[*] If for some $s \in S$, $s + 1$ is composite, then all positive divisors of $s + 1$ are in $S$.
[/list]
Prove that $S$ contains all positive integers.
2014 PUMaC Geometry B, 3
In $\triangle ABC$, $E\in AC$, $D\in AB$, $P=BE\cap CD$. Given that $S\triangle BPC=12$, while the areas of $\triangle BPD$, $\triangle CPE$ and quadrilateral $AEPD$ are all the same, which is $x$. Find the value of $x$.
2009 Princeton University Math Competition, 4
In the following diagram (not to scale), $A$, $B$, $C$, $D$ are four consecutive vertices of an 18-sided regular polygon with center $O$. Let $P$ be the midpoint of $AC$ and $Q$ be the midpoint of $DO$. Find $\angle OPQ$ in degrees.
[asy]
pathpen = rgb(0,0,0.6)+linewidth(0.7); pointpen = black+linewidth(3); pointfontpen = fontsize(10); pen dd = rgb(0,0,0.6)+ linewidth(0.7) + linetype("4 4"); real n = 10, start = 360/n*6-15;
pair O=(0,0), A=dir(start), B=dir(start+360/n), C=dir(start+2*360/n), D=dir(start+3*360/n), P=(A+C)/2, Q=(O+D)/2; D(D("O",O,NE)--D("A",A,W)--D("B",B,SW)--D("C",C,S)--D("D",D,SE)--O--D("P",P,1.6*dir(95))--D("Q",Q,NE)); D(A--C); D(A--(A+dir(start-360/n))/2, dd); D(D--(D+dir(start+4*360/n))/2, dd);
[/asy]
Kyiv City MO 1984-93 - geometry, 1986.10.5
Let $E$ be a point on the side $AD$ of the square $ABCD$. Find such points $M$ and $K$ on the sides $AB$ and $BC$ respectively, such that the segments $MK$ and $EC$ are parallel, and the quadrilateral $MKCE$ has the largest area.
2013 All-Russian Olympiad, 1
Does exist natural $n$, such that for any non-zero digits $a$ and $b$ \[\overline {ab}\ |\ \overline {anb}\ ?\]
(Here by $ \overline {x \ldots y} $ denotes the number obtained by concatenation decimal digits $x$, $\dots$, $y$.)
[i]V. Senderov[/i]
2010 Romania Team Selection Test, 3
Let $\gamma_1$ and $\gamma_2$ be two circles tangent at point $T$, and let $\ell_1$ and $\ell_2$ be two lines through $T$. The lines $\ell_1$ and $\ell_2$ meet again $\gamma_1$ at points $A$ and $B$, respectively, and $\gamma_2$ at points $A_1$ and $B_1$, respectively. Let further $X$ be a point in the complement of $\gamma_1 \cup \gamma_2 \cup \ell_1 \cup \ell_2$. The circles $ATX$ and $BTX$ meet again $\gamma_2$ at points $A_2$ and $B_2$, respectively. Prove that the lines $TX$, $A_1B_2$ and $A_2B_1$ are concurrent.
[i]***[/i]
2024 Princeton University Math Competition, 9
Define a sequence called the $2020$-nacci sequence. It is defined as follows: If $n \le 2020$ then $S_n=1,$ if $n>2020$ then $S_n=\sum_{i=n-2020}^{n-1} S_i.$ Find the last two digits of $S_{4040}.$
1991 Arnold's Trivium, 4
Calculate the $100$th derivative of the function
\[\frac{x^2+1}{x^3-x}\]
1986 Spain Mathematical Olympiad, 5
Consider the curve $\Gamma$ defined by the equation $y^2 = x^3 +bx+b^2$, where $b$ is a nonzero rational constant. Inscribe in the curve $\Gamma$ a triangle whose vertices have rational coordinates.
2021 Bulgaria National Olympiad, 4
Two infinite arithmetic sequences with positive integers are given:$$a_1<a_2<a_3<\cdots ; b_1<b_2<b_3<\cdots$$
It is known that there are infinitely many pairs of positive integers $(i,j)$ for which $i\leq j\leq i+2021$ and $a_i$ divides $b_j$. Prove that for every positive integer $i$ there exists a positive integer $j$ such that $a_i$ divides $b_j$.
2010 Postal Coaching, 3
Determine the smallest odd integer $n \ge 3$, for which there exist $n$ rational numbers $x_1 , x_2 , . . . , x_n$ with the following properties:
$(a)$ \[\sum_{i=1}^{n} x_i =0 , \ \sum_{i=1}^{n} x_i^2 = 1.\]
$(b)$ \[x_i \cdot x_j \ge - \frac 1n \ \forall \ 1 \le i,j \le n.\]
2016 239 Open Mathematical Olympiad, 2
In triangle $ABC$, the incircle touches sides $AB$ and $BC$ at points $P$ and $Q$, respectively. Median of triangle $ABC$ from vertex $B$ meets segment $P Q$ at point $R$. Prove that angle $ARC$ is obtuse.
2015 All-Russian Olympiad, 8
Given natural numbers $a$ and $b$, such that $a<b<2a$. Some cells on a graph are colored such that in every rectangle with dimensions $A \times B$ or $B \times A$, at least one cell is colored. For which greatest $\alpha$ can you say that for every natural number $N$ you can find a square $N \times N$ in which at least $\alpha \cdot N^2$ cells are colored?
1988 Flanders Math Olympiad, 1
show that the polynomial $x^4+3x^3+6x^2+9x+12$ cannot be written as the product of 2 polynomials of degree 2 with integer coefficients.
2021 Science ON Seniors, 1
Find all sequences of positive integers $(a_n)_{n\ge 1}$ which satisfy
$$a_{n+2}(a_{n+1}-1)=a_n(a_{n+1}+1)$$
for all $n\in \mathbb{Z}_{\ge 1}$.
[i](Bogdan Blaga)[/i]
2024 Argentina National Olympiad Level 2, 5
Let $A_1A_2\cdots A_n$ be a regular polygon with $n$ sides, $n \geqslant 3$. Initially, there are three ants standing at vertex $A_1$. Every minute, two ants simultaneously move to an adjacent vertex, but in different directions (one clockwise and the other counterclockwise), and the third stays at its current vertex. Determine all the values of $n$ for which, after some time, the three ants can meet at the same vertex of the polygon, different from $A_1$.
2022 MMATHS, 7
$\vartriangle ABC$ satisfies $AB = 16$, $BC = 30$, and $\angle ABC = 90^o$. On the circumcircle of $\vartriangle ABC$, let $P$ be the midpoint of arc $AC$ not containing $B$, and let $X$ and $Y$ lie on lines $AB$ and $BC$, respectively, with $PX \perp AB$ and $PY \perp BC$. Find $XY^2$.
2005 Baltic Way, 10
Let $m = 30030$ and let $M$ be the set of its positive divisors which have exactly $2$ prime factors. Determine the smallest positive integer $n$ with the following property: for any choice of $n$ numbers from $M$, there exist 3 numbers $a$, $b$, $c$ among them satisfying $abc=m$.
2008 ISI B.Stat Entrance Exam, 5
Suppose $ABC$ is a triangle with inradius $r$. The incircle touches the sides $BC, CA,$ and $AB$ at $D,E$ and $F$ respectively. If $BD=x, CE=y$ and $AF=z$, then show that
\[r^2=\frac{xyz}{x+y+z}\]
2019 PUMaC Geometry A, 1
A right cone in $xyz$-space has its apex at $(0,0,0)$, and the endpoints of a diameter on its base are $(12,13,-9)$ and $(12,-5,15)$. The volume of the cone can be expressed as $a\pi$. What is $a$?
1985 IMO Longlists, 17
Set
\[A_n=\sum_{k=1}^n \frac{k^6}{2^k}.\]
Find $\lim_{n\to\infty} A_n.$
2010 Today's Calculation Of Integral, 530
Answer the following questions.
(1) By setting $ x\plus{}\sqrt{x^2\minus{}1}\equal{}t$, find the indefinite integral $ \int \sqrt{x^2\minus{}1}\ dx$.
(2) Given two points $ P(p,\ q)\ (p>1,\ q>0)$ and $ A(1,\ 0)$ on the curve $ x^2\minus{}y^2\equal{}1$. Find the area $ S$ of the figure bounded by two lines $ OA,\ OP$ and the curve in terms of $ p$.
(3) Let $ S\equal{}\frac{\theta}{2}$. Express $ p,\ q$ in terms of $ \theta$.
1946 Putnam, A2
If $a(x), b(x), c(x)$ and $d(x)$ are polynomials in $ x$, show that
$$ \int_{1}^{x} a(x) c(x)\; dx\; \cdot \int_{1}^{x} b(x) d(x) \; dx - \int_{1}^{x} a(x) d(x)\; dx\; \cdot \int_{1}^{x} b(x) c(x)\; dx$$
is divisible by $(x-1)^4.$
2016 Romania National Olympiad, 1
The orthocenter $ H $ of a triangle $ ABC $ is distinct from its vertices and its circumcenter $ O. $ $ M,N,P $ are the circumcenters of the triangles $ HBC,HCA, $ respectively, $ HAB. $ Prove that $ AM,BN,CP $ and $ OH $ are concurrent.
2002 AMC 8, 9
$\textbf{Juan's Old Stamping Grounds}$
Juan organizes the stamps in his collection by country and by the decade in which they were issued. The prices he paid for them at a stamp shop were: Brazil and France, 6 cents each, Peru 4 cents each, and Spain 5 cents each. (Brazil and Peru are South American countries and France and Spain are in Europe.)
[asy]
/* AMC8 2002 #8, 9, 10 Problem */
size(3inch, 1.5inch);
for ( int y = 0; y <= 5; ++y )
{
draw((0,y)--(18,y));
}
draw((0,0)--(0,5));
draw((6,0)--(6,5));
draw((9,0)--(9,5));
draw((12,0)--(12,5));
draw((15,0)--(15,5));
draw((18,0)--(18,5));
draw(scale(0.8)*"50s", (7.5,4.5));
draw(scale(0.8)*"4", (7.5,3.5));
draw(scale(0.8)*"8", (7.5,2.5));
draw(scale(0.8)*"6", (7.5,1.5));
draw(scale(0.8)*"3", (7.5,0.5));
draw(scale(0.8)*"60s", (10.5,4.5));
draw(scale(0.8)*"7", (10.5,3.5));
draw(scale(0.8)*"4", (10.5,2.5));
draw(scale(0.8)*"4", (10.5,1.5));
draw(scale(0.8)*"9", (10.5,0.5));
draw(scale(0.8)*"70s", (13.5,4.5));
draw(scale(0.8)*"12", (13.5,3.5));
draw(scale(0.8)*"12", (13.5,2.5));
draw(scale(0.8)*"6", (13.5,1.5));
draw(scale(0.8)*"13", (13.5,0.5));
draw(scale(0.8)*"80s", (16.5,4.5));
draw(scale(0.8)*"8", (16.5,3.5));
draw(scale(0.8)*"15", (16.5,2.5));
draw(scale(0.8)*"10", (16.5,1.5));
draw(scale(0.8)*"9", (16.5,0.5));
label(scale(0.8)*"Country", (3,4.5));
label(scale(0.8)*"Brazil", (3,3.5));
label(scale(0.8)*"France", (3,2.5));
label(scale(0.8)*"Peru", (3,1.5));
label(scale(0.8)*"Spain", (3,0.5));
label(scale(0.9)*"Juan's Stamp Collection", (9,0), S);
label(scale(0.9)*"Number of Stamps by Decade", (9,5), N);
[/asy]
In dollars and cents, how much did his South American stampes issued before the '70s cost him?
$ \text{(A)}\ \textdollar 0.40\qquad\text{(B)}\ \textdollar 1.06\qquad\text{(C)}\ \textdollar 1.80\qquad\text{(D)}\ \textdollar 2.38\qquad\text{(E)}\ \textdollar 2.64 $