Found problems: 85335
1997 AMC 12/AHSME, 24
A rising number, such as $ 34689$, is a positive integer each digit of which is larger than each of the digits to its left. There are $ \dbinom{9}{5} \equal{} 126$ five-digit rising numbers. When these numbers are arranged from smallest to largest, the $ 97$th number in the list does not contain the digit
$ \textbf{(A)}\ 4\qquad
\textbf{(B)}\ 5\qquad
\textbf{(C)}\ 6\qquad
\textbf{(D)}\ 7\qquad
\textbf{(E)}\ 8$
2013 ELMO Shortlist, 6
A $4\times4$ grid has its 16 cells colored arbitrarily in three colors. A [i]swap[/i] is an exchange between the colors of two cells. Prove or disprove that it always takes at most three swaps to produce a line of symmetry, regardless of the grid's initial coloring.
[i]Proposed by Matthew Babbitt[/i]
2014 Sharygin Geometry Olympiad, 5
The altitude from one vertex of a triangle, the bisector from the another one and the median from the remaining vertex were drawn, the common points of these three lines were marked, and after this everything was erased except three marked points. Restore the triangle. (For every two erased segments, it is known which of the three points was their intersection point.)
(A. Zaslavsky)
2007 Germany Team Selection Test, 3
For all positive integers $n$, show that there exists a positive integer $m$ such that $n$ divides $2^{m} + m$.
[i]Proposed by Juhan Aru, Estonia[/i]
2020 LMT Fall, 28
13 LHS Students attend the LHS Math Team tryouts. The students are numbered $1, 2, .. 13$. Their scores are $s_1,s_2, ... s_{13}$, respectively. There are 5 problems on the tryout, each of which is given a weight, labeled $w_1, w_2, ... w_5$. Each score $s_i$ is equal to the sums of the weights of all problems solved by student $i$. On the other hand, each weight $w_j$ is assigned to be $\frac{1}{\sum_ {s_i} }$, where the sum is over all the scores of students who solved problem $j$. (If nobody solved a problem, the score doesn't matter). If the largest possible average score of the students can be expressed in the form $\frac{\sqrt{a}}{b}$, where $a$ is square-free, find $a+b$.
[i]Proposed by Jeff Lin[/i]
1979 Bundeswettbewerb Mathematik, 1
There are $n$ teams in a football league. During a championship, every two teams play exactly one match, but no team can play more than one match in a week. At least, how many weeks are necessary for the championship to be held? Give an schedule for such a championship.
2004 Switzerland - Final Round, 9
Let $ABCD$ be a cyclic quadrilateral, so that $|AB| + |CD| = |BC|$. Show that the intersection of the bisector of $\angle DAB$ and $\angle CDA$ lies on the side $BC$.
2020 USA TSTST, 5
Let $\mathbb{N}^2$ denote the set of ordered pairs of positive integers. A finite subset $S$ of $\mathbb{N}^2$ is [i]stable[/i] if whenever $(x,y)$ is in $S$, then so are all points $(x',y')$ of $\mathbb{N}^2$ with both $x'\leq x$ and $y'\leq y$.
Prove that if $S$ is a stable set, then among all stable subsets of $S$ (including the empty set and $S$ itself), at least half of them have an even number of elements.
[i]Ashwin Sah and Mehtaab Sawhney[/i]
1981 Spain Mathematical Olympiad, 4
Calculate the integral $$\int \frac{dx}{\sin (x - 1) \sin (x - 2)} .$$
Hint: Change $\tan x = t$ .
1977 Spain Mathematical Olympiad, 1
Given the determinant of order $n$
$$\begin{vmatrix}
8 & 3 & 3 & \dots & 3 \\
3 & 8 & 3 & \dots & 3 \\
3 & 3 & 8 & \dots & 3 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
3 & 3 & 3 & \dots & 8
\end{vmatrix}$$
Calculate its value and determine for which values of $n$ this value is a multiple of $10$.
2014 USAMO, 3
Prove that there exists an infinite set of points \[ \dots, \; P_{-3}, \; P_{-2},\; P_{-1},\; P_0,\; P_1,\; P_2,\; P_3,\; \dots \] in the plane with the following property: For any three distinct integers $a,b,$ and $c$, points $P_a$, $P_b$, and $P_c$ are collinear if and only if $a+b+c=2014$.
2023 HMNT, 5
Let $ABCDE$ be a convex pentagon such that
\begin{align*}
&AB+BC+CD+DE+EA=65 \text{ and} \\
&AC+CE+EB+BD+DA=72.
\end{align*}
Compute the perimeter of the convex pentagon whose vertices are the midpoints of the sides of $ABCDE.$
2011 ELMO Shortlist, 1
Let $n$ be a positive integer. There are $n$ soldiers stationed on the $n$th root of unity in the complex plane. Each round, you pick a point, and all the soldiers shoot in a straight line towards that point; if their shot hits another soldier, the hit soldier dies and no longer shoots during the next round. What is the minimum number of rounds, in terms of $n$, required to eliminate all the soldiers?
[i]David Yang.[/i]
1998 All-Russian Olympiad Regional Round, 8.5
Place numbers from $1$ to $9$ in the circles of the figure (see Fig. ) so that the sum of four numbers, finding located in the circles at the tops of all squares (there are six of them), was constant ,
[img]https://cdn.artofproblemsolving.com/attachments/8/8/5fe1e8c5949903dd9500b992c8139277cebe7f.png[/img]
LMT Speed Rounds, 9
Find the least positive integer $k$ such that when $\frac{k}{2023}$ is written in simplest form, the sum of the numerator and denominator is divisible by $7$.
[i]Proposed byMuztaba Syed[/i]
2014 JHMMC 7 Contest, 8
A hedgehog has $4$ friends on Day $1$. If the number of friends he has increases by $5$ every day, how many friends will he have on Day $6$?
1969 Polish MO Finals, 5
For which values of n does there exist a polyhedron having $n$ edges?
1995 Brazil National Olympiad, 4
A regular tetrahedron has side $L$. What is the smallest $x$ such that the tetrahedron can be passed through a loop of twine of length $x$?
2002 Pan African, 3
Prove for every integer $n>0$, there exists an integer $k>0$ such that $2^nk$ can be written in decimal notation using only digits 1 and 2.
2022 South East Mathematical Olympiad, 6
Let $O$ be the circumcenter of $\triangle ABC$. A circle with center $P$ pass through $A$ and $O$ and $OP$//$BC$. $D$ is a point such that $\angle DBA = \angle DCA = \angle BAC$. Prove that: Circle $(P)$, circle $(BCD)$ and the circle with diameter $(AD)$ share a common point.
[img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvMS9jLzlmZjdlN2ExZDJjYjAwYWJlZTQzYWRkYzg3NDlhMTUyZjRlNGJjLmpwZw==&rn=c291dGhlYXN0UDYuanBn[/img]
2025 India STEMS Category C, 6
Let $G$ be a finite abelian group. There is a magic box $T$. At any point, an element of $G$ may be added to the box and all elements belonging to the subgroup (of $G$) generated by the elements currently inside $T$ are moved from outside $T$ to inside (unless they are already inside). Initially $
T$ contains only the group identity, $1_G$. Alice and Bob take turns moving an element from outside $T$ to inside it. Alice moves first. Whoever cannot make a move loses. Find all $G$ for which Bob has a winning strategy.
1987 Vietnam National Olympiad, 1
Let $ u_1$, $ u_2$, $ \ldots$, $ u_{1987}$ be an arithmetic progression with $ u_1 \equal{} \frac {\pi}{1987}$ and the common difference $ \frac {\pi}{3974}$. Evaluate
\[ S \equal{} \sum_{\epsilon_i\in\left\{ \minus{} 1, 1\right\}}\cos\left(\epsilon_1 u_1 \plus{} \epsilon_2 u_2 \plus{} \cdots \plus{} \epsilon_{1987} u_{1987}\right)
\]
2022 Thailand TST, 2
The kingdom of Anisotropy consists of $n$ cities. For every two cities there exists exactly one direct one-way road between them. We say that a [i]path from $X$ to $Y$[/i] is a sequence of roads such that one can move from $X$ to $Y$ along this sequence without returning to an already visited city. A collection of paths is called [i]diverse[/i] if no road belongs to two or more paths in the collection.
Let $A$ and $B$ be two distinct cities in Anisotropy. Let $N_{AB}$ denote the maximal number of paths in a diverse collection of paths from $A$ to $B$. Similarly, let $N_{BA}$ denote the maximal number of paths in a diverse collection of paths from $B$ to $A$. Prove that the equality $N_{AB} = N_{BA}$ holds if and only if the number of roads going out from $A$ is the same as the number of roads going out from $B$.
[i]Proposed by Warut Suksompong, Thailand[/i]
2010 USAMO, 1
Let $AXYZB$ be a convex pentagon inscribed in a semicircle of diameter $AB$. Denote by $P$, $Q$, $R$, $S$ the feet of the perpendiculars from $Y$ onto lines $AX$, $BX$, $AZ$, $BZ$, respectively. Prove that the acute angle formed by lines $PQ$ and $RS$ is half the size of $\angle XOZ$, where $O$ is the midpoint of segment $AB$.
2003 USAMO, 2
A convex polygon $\mathcal{P}$ in the plane is dissected into smaller convex polygons by drawing all of its diagonals. The lengths of all sides and all diagonals of the polygon $\mathcal{P}$ are rational numbers. Prove that the lengths of all sides of all polygons in the dissection are also rational numbers.