This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2010 Stanford Mathematics Tournament, 23

Tags:
Let $f(X, Y, Z)=X^5Y-XY^5+Y^5Z-YZ^5+Z^5X-ZX^5$. Find $\frac{f(2009, 2010, 2011)+f(2010, 2011, 2009)-f(2011, 2010, 2009)}{f(2009, 2010, 2011)}$

2015 Korea National Olympiad, 3

Tags: set , combinatorics
A positive integer $n$ is given. If there exists sets $F_1, F_2, \cdots F_m$ satisfying the following conditions, prove that $m \le n$. (For sets $A, B$, $|A|$ is the number of elements of $A$. $A-B$ is the set of elements that are in $A$ but not $B$. $\text{min}(x,y)$ is the number that is not larger than the other.) (i): For all $1 \le i \le m$, $F_i \subseteq \{1,2,\cdots,n\}$ (ii): For all $1 \le i < j \le m$, $\text{min}(|F_i-F_j|,|F_j-F_i|) = 1$

1968 German National Olympiad, 5

Prove that for all real numbers $x$ of the interval $0 < x <\pi$ the inequality $$\sin x +\frac12 \sin 2x +\frac13 \sin 3x > 0$$ holds.

2022 USAMTS Problems, 4

Tags: geometry
Let $ \omega$ be a circle with center O and radius 10, and let H be a point such that $OH = 6$. A point P is called snug if, for all triangles ABC with circumcircle ω and orthocenter $H$, we have that P lies on $\triangle$ABC or in the interior of $\triangle$ABC. Find the area of the region consisting of all snug points.

2018 USAMO, 3

For a given integer $n\ge 2$, let $\{a_1,a_2,…,a_m\}$ be the set of positive integers less than $n$ that are relatively prime to $n$. Prove that if every prime that divides $m$ also divides $n$, then $a_1^k+a_2^k + \dots + a_m^k$ is divisible by $m$ for every positive integer $k$. [i]Proposed by Ivan Borsenco[/i]

2006 USAMO, 6

Let $ABCD$ be a quadrilateral, and let $E$ and $F$ be points on sides $AD$ and $BC$, respectively, such that $\frac{AE}{ED} = \frac{BF}{FC}$. Ray $FE$ meets rays $BA$ and $CD$ at $S$ and $T$, respectively. Prove that the circumcircles of triangles $SAE$, $SBF$, $TCF$, and $TDE$ pass through a common point.

2020 Kazakhstan National Olympiad, 3

A point $ N $ is marked on the median $ CM $ of the triangle $ ABC $ so that $ MN \cdot MC = AB ^ 2/4 $. Lines $ AN $ and $ BN $ intersect the circumcircle $ \triangle ABC $ for the second time at points $ P $ and $ Q $, respectively. $ R $ is the point of segment $ PQ $, nearest to $ Q $, such that $ \angle NRC = \angle BNC $. $ S $ is the point of the segment $ PQ $ closest to $ P $ such that $ \angle NSC = \angle ANC $. Prove that $ RN = SN $.

1991 India National Olympiad, 9

Triangle $ABC$ has an incenter $I$ l its incircle touches the side $BC$ at $T$. The line through $T$ parallel to $IA$ meets the incircle again at $S$ and the tangent to the incircle at $S$ meets $AB , AC$ at points $C' , B'$ respectively. Prove that triangle $AB'C'$ is similar to triangle $ABC$.

2020 BMT Fall, 18

Let $x$ and $y$ be integers between $0$ and $5$, inclusive. For the system of modular congruences $$ \begin{cases} x + 3y \equiv 1 \,\,(mod \, 2) \\ 4x + 5y \equiv 2 \,\,(mod \, 3) \end{cases}$$, find the sum of all distinct possible values of $x + y$

2016 Greece Team Selection Test, 1

Given is the sequence $(a_n)_{n\geq 0}$ which is defined as follows:$a_0=3$ and $a_{n+1}-a_n=n(a_n-1) \ , \ \forall n\geq 0$. Determine all positive integers $m$ such that $\gcd (m,a_n)=1 \ , \ \forall n\geq 0$.

2010 Laurențiu Panaitopol, Tulcea, 2

Let be a nonnegative integer $ n $ such that $ \sqrt n $ is not integer. Show that the function $$ f:\{ a+b\sqrt n | a,b\in\{ 0\}\cup\mathbb{N} , a^2-nb^2=1 \}\longrightarrow\{ 0\}\cup\mathbb{N} , f(x) =\lfloor x \rfloor $$ is injective and non-surjective.

2024 Korea Winter Program Practice Test, Q1

Tags: geometry
A point $P$ lies inside $\usepackage{gensymb} \angle ABC(<90 \degree)$. Show that there exists a point $Q$ inside $\angle ABC$ satisfying the following condition: [center]For any two points $X$ and $Y$ on the rays $\overrightarrow{BA}$ and $\overrightarrow{BC}$ respectively satisfying $\angle XPY = \angle ABC$, it holds that $\usepackage{gensymb} \angle XQY = 180 \degree - 2 \angle ABC.$[/center]

2017 Dutch IMO TST, 2

Tags: algebra , sequence
let $a_1,a_2,...a_n$ a sequence of real numbers such that $a_1+....+a_n=0$. define $b_i=a_1+a_2+....a_i$ for all $1 \leq i \leq n$ .suppose $b_i(a_{j+1}-a_{i+1}) \geq 0$ for all $1 \leq i \leq j \leq n-1$. Show that $$\max_{1 \leq l \leq n} |a_l| \geq \max_{1 \leq m \leq n} |b_m|$$

1971 Vietnam National Olympiad, 2

$ABCDA'B'C'D'$ is a cube (with $ABCD$ and $A'B'C'D'$ faces, and $AA', BB', CC', DD'$ edges). $L$ is a line which intersects or is parallel to the lines $AA', BC$ and $DB'$. $L$ meets the line $BC$ at $M$ (which may be the point at infinity). Let $m = |BM|$. The plane $MAA'$ meets the line $B'C'$ at $E$. Show that $|B'E| = m$. The plane $MDB'$ meets the line $A'D'$ at $F$. Show that $|D'F| = m$. Hence or otherwise show how to construct the point $P$ at the intersection of $L$ and the plane $A'B'C'D'$. Find the distance between $P$ and the line $A'B'$ and the distance between $P$ and the line $A'D'$ in terms of $m$. Find a relation between these two distances that does not depend on $m$. Find the locus of $M$. Let $S$ be the envelope of the line $L$ as $M$ varies. Find the intersection of $S$ with the faces of the cube.

1997 Putnam, 1

A rectangle, $HOMF$, has sides $HO=11$ and $OM=5$. A triangle $\Delta ABC$ has $H$ as orthocentre, $O$ as circumcentre, $M$ be the midpoint of $BC$, $F$ is the feet of altitude from $A$. What is the length of $BC$ ? [asy] unitsize(0.3 cm); pair F, H, M, O; F = (0,0); H = (0,5); O = (11,5); M = (11,0); draw(H--O--M--F--cycle); label("$F$", F, SW); label("$H$", H, NW); label("$M$", M, SE); label("$O$", O, NE); [/asy]

2008 ITest, 1

Tags:
Jerry and Hannah Kubik live in Jupiter Falls with their five children. Jerry works as a Renewable Energy Engineer for the Southern Company, and Hannah runs a lab at Jupiter Falls University where she researches biomass (renewable fuel) conversion rates. Michael is their oldest child, and Wendy their oldest daughter. Tony is the youngest child. Twins Joshua and Alexis are $12$ years old. When the Kubiks went on vacation to San Diego last year, they spent a day at the San Diego Zoo. Single day passes cost $\$33$ for adults (Jerry and Hannah), $\$22$ for children (Michael is still young enough to get the children's rate), and family memberships (which allow the whole family in at once) cost $\$120$. How many dollars did the family save by buying a family pass over buying single day passes for every member of the family?

2015 Junior Balkan Team Selection Tests - Moldova, 2

Show an example of $15$ nonzero natural numbers with the property that if each one of them is increased by one, then the product of all increased numbers is $2015$ times higher than the product of the initial numbers

Croatia MO (HMO) - geometry, 2023.3

Tags: hexagon , cyclic , geometry
A convex hexagon $ABCDEF$ is given, with each two opposite sides of different lengths and parallel ($AB \parallel DE$, $BC \parallel EF$ and $CD \parallel FA$). If $|AE| = |BD|$ and $|BF| = |CE|$, prove that the hexagon $ABCDEF$ is cyclic.

2020 Baltic Way, 15

On a plane, Bob chooses 3 points $A_0$, $B_0$, $C_0$ (not necessarily distinct) such that $A_0B_0+B_0C_0+C_0A_0=1$. Then he chooses points $A_1$, $B_1$, $C_1$ (not necessarily distinct) in such a way that $A_1B_1=A_0B_0$ and $B_1C_1=B_0C_0$. Next he chooses points $A_2$, $B_2$, $C_2$ as a permutation of points $A_1$, $B_1$, $C_1$. Finally, Bob chooses points $A_3$, $B_3$, $C_3$ (not necessarily distinct) in such a way that $A_3B_3=A_2B_2$ and $B_3C_3=B_2C_2$. What are the smallest and the greatest possible values of $A_3B_3+B_3C_3+C_3A_3$ Bob can obtain?

2018 Hanoi Open Mathematics Competitions, 1

Let $x$ and $y$ be real numbers satisfying the conditions $x + y = 4$ and $xy = 3$. Compute the value of $(x - y)^2$. A. $0$ B. $1$ C. $4$ D. $9$ E.$ -1$

2008 China National Olympiad, 2

Given an integer $n\ge3$, prove that the set $X=\{1,2,3,\ldots,n^2-n\}$ can be divided into two non-intersecting subsets such that neither of them contains $n$ elements $a_1,a_2,\ldots,a_n$ with $a_1<a_2<\ldots<a_n$ and $a_k\le\frac{a_{k-1}+a_{k+1}}2$ for all $k=2,\ldots,n-1$.

2017 Stars of Mathematics, 4

Tags: geometry
Let $ ABC $ be an acute triangle having $ AB<AC, $ let $ M $ be the midpoint of the segment $ BC, D$ be a point on the segment $ AM, E $ be a point on the segment $ BD $ and $ F $ on the line $ AB $ such that $ EF $ is parallel to $ BC, $ and such that $ AE $ and $ DF $ pass through the orthocenter of $ ABC. $ Prove that the interior bisectors of $ \angle BAC $ and $ \angle BDC, $ together with $ BC $ are concurrent. [i]Vlad Robu[/i]

2009 Federal Competition For Advanced Students, P1, 4

Let $D, E$, and $F$ be respectively the midpoints of the sides $BC, CA$, and $AB$ of $\vartriangle ABC$. Let $H_a, H_b, H_c$ be the feet of perpendiculars from $A, B, C$ to the opposite sides, respectively. Let $P, Q, R$ be the midpoints of the $H_bH_c, H_cH_a$, and $H_aH_b$ respectively. Prove that $PD, QE$, and $RF$ are concurrent.

2019 Mexico National Olympiad, 1

An integer number $m\geq 1$ is [i]mexica[/i] if it's of the form $n^{d(n)}$, where $n$ is a positive integer and $d(n)$ is the number of positive integers which divide $n$. Find all mexica numbers less than $2019$. Note. The divisors of $n$ include $1$ and $n$; for example, $d(12)=6$, since $1, 2, 3, 4, 6, 12$ are all the positive divisors of $12$. [i]Proposed by Cuauhtémoc Gómez[/i]

2004 AMC 10, 21

Let $ 1,4,\cdots$ and $ 9,16,\cdots$ be two arithmetic progressions. The set $ S$ is the union of the fi rst $ 2004$ terms of each sequence. How many distinct numbers are in $ S$? $ \textbf{(A)}\ 3722\qquad \textbf{(B)}\ 3732\qquad \textbf{(C)}\ 3914\qquad \textbf{(D)}\ 3924\qquad \textbf{(E)}\ 4007$