This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1999 Brazil Team Selection Test, Problem 1

Find all positive integers n with the following property: There exists a positive integer $k$ and mutually distinct integers $x_1,x_2,\ldots,x_n$ such that the set $\{x_i+x_j\mid1\le i<j\le n\}$ is a set of distinct powers of $k$.

Revenge EL(S)MO 2024, 5

In triangle $ABC$ let the $A$-foot be $E$ and the $B$-excenter be $L$. Suppose the incircle of $ABC$ is tangent to $AC$ at $I$. Construct a hyperbola $\mathcal H$ through $A$ with $B$ and $C$ as the foci such that $A$ lies on the branch of the $\mathcal H$ closer to $C$. Construct an ellipse $\mathcal E$ passing through $I$ with $B$ and $C$ as the foci. Suppose $\mathcal E$ meets $\overline{AB}$ again at point $H$. Let $\overline{CH}$ and $\overline{BI}$ intersect the $C$-branch of $\mathcal H$ at points $M$ and $O$ respectively. Prove $E$, $L$, $M$, $O$ are concyclic. Proposed by [i]Alex Wang[/i]

2005 Today's Calculation Of Integral, 39

Find the minimum value of the following function $f(x) $ defined at $0<x<\frac{\pi}{2}$. \[f(x)=\int_0^x \frac{d\theta}{\cos \theta}+\int_x^{\frac{\pi}{2}} \frac{d\theta}{\sin \theta}\]

2009 IMO Shortlist, 5

Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\] [i]Proposed by Igor Voronovich, Belarus[/i]

2022 DIME, 5

Tags:
The four-digit base ten number $\underline{a}\;\underline{b}\;\underline{c}\;\underline{d}$ has all nonzero digits and is a multiple of $99$. Additionally, the two-digit base ten number $\underline{a}\;\underline{b}$ is a divisor of $150$, and the two-digit base ten number $\underline{c}\;\underline{d}$ is a divisor of $168$. Find the remainder when the sum of all possible values of the number $\underline{a}\;\underline{b}\;\underline{c}\;\underline{d}$ is divided by $1000$. [i]Proposed by [b]treemath[/b][/i]

1968 Vietnam National Olympiad, 1

Let $a$ and $b$ satisfy $a \ge b >0, a + b = 1$. i) Prove that if $m$ and $n$ are positive integers with $m < n$, then $a^m - a^n \ge b^m- b^n > 0$. ii) For each positive integer $n$, consider a quadratic function $f_n(x) = x^2 - b^nx- a^n$. Show that $f(x)$ has two roots that are in between $-1$ and $1$.

2005 Estonia Team Selection Test, 5

On a horizontal line, $2005$ points are marked, each of which is either white or black. For every point, one finds the sum of the number of white points on the right of it and the number of black points on the left of it. Among the $2005$ sums, exactly one number occurs an odd number of times. Find all possible values of this number.

1983 Dutch Mathematical Olympiad, 2

Prove that if $ n$ is an odd positive integer, then the last two digits of $ 2^{2n}(2^{2n\plus{}1}\minus{}1)$ in base $ 10$ are $ 28$.

2025 India STEMS Category B, 6

Let $P \in \mathbb{R}[x]$. Suppose that the multiset of real roots (where roots are counted with multiplicity) of $P(x)-x$ and $P^3(x)-x$ are distinct. Prove that for all $n\in \mathbb{N}$, $P^n(x)-x$ has at least $\sigma(n)-2$ distinct real roots. (Here $P^n(x):=P(P^{n-1}(x))$ with $P^1(x) = P(x)$, and $\sigma(n)$ is the sum of all positive divisors of $n$). [i]Proposed by Malay Mahajan[/i]

2012 IMO Shortlist, A1

Find all functions $f:\mathbb Z\rightarrow \mathbb Z$ such that, for all integers $a,b,c$ that satisfy $a+b+c=0$, the following equality holds: \[f(a)^2+f(b)^2+f(c)^2=2f(a)f(b)+2f(b)f(c)+2f(c)f(a).\] (Here $\mathbb{Z}$ denotes the set of integers.) [i]Proposed by Liam Baker, South Africa[/i]

2019 Dutch BxMO TST, 1

Prove that for each positive integer $n$ there are at most two pairs $(a, b)$ of positive integers with following two properties: (i) $a^2 + b = n$, (ii) $a+b$ is a power of two, i.e. there is an integer $k \ge 0$ such that $a+b = 2^k$.

2024 AMC 8 -, 11

The coordinates of $\triangle ABC$ are $A(5, 7)$, $B(11, 7)$, $C(3, y)$, with $y > 7$. The area of $\triangle ABC$ is $12$. What is the value of $y$? [asy] size(10cm); draw((5,7)--(11,7)--(3,11)--cycle); label("$A(5,7)$", (5,7),S); label("$B(11,7)$", (11,7),S); label("$C(3,y)$", (3,11),W); [/asy] $\textbf{(A) } 8\qquad\textbf{(B) } 9\qquad\textbf{(C) } 10\qquad\textbf{(D) } 11\qquad\textbf{(E) } 12$

CNCM Online Round 1, 4

Tags:
Consider all possible pairs of positive integers $(a,b)$ such that $a \geq b$ and both $\dfrac{a^2 + b}{a - 1}$ and $\dfrac{b^2 + a}{b - 1}$ are integers. Find the sum of all possible values of the product $ab$. Proposed by Akshar Yeccherla (TopNotchMath)

1987 AMC 12/AHSME, 15

Tags:
If $(x, y)$ is a solution to the system \[ xy=6 \qquad \text{and} \qquad x^2y+xy^2+x+y=63, \] find $x^2+y^2.$ $ \textbf{(A)}\ 13 \qquad\textbf{(B)}\ \frac{1173}{32} \qquad\textbf{(C)}\ 55 \qquad\textbf{(D)}\ 69 \qquad\textbf{(E)}\ 81 $

2016 ELMO Problems, 4

Big Bird has a polynomial $P$ with integer coefficients such that $n$ divides $P(2^n)$ for every positive integer $n$. Prove that Big Bird's polynomial must be the zero polynomial. [i]Ashwin Sah[/i]

2007 ITest, 44

A positive integer $n$ between $1$ and $N=2007^{2007}$ inclusive is selected at random. If $a$ and $b$ are natural numbers such that $a/b$ is the probability that $N$ and $n^3-36n$ are relatively prime, find the value of $a+b$.

1962 Miklós Schweitzer, 10

From a given triangle of unit area, we choose two points independetly with uniform distribution. The straight line connecting these points divides the triangle. with probability one, into a triangle and a quadrilateral. Calculate the expected values of the areas of these two regions. [A. Renyi]

1962 Putnam, B3

Let $S$ be a convex region in the euclidean plane containing the origin. Assume that every ray from the origin has at least one point outside $S$. Prove that $S$ is bounded.

Revenge EL(S)MO 2024, 7

Tags: algebra , logic
Prove that $\forall n\in\mathbb{Z}^+_0:(\exists b\in\mathbb{Z}^+_0:(\forall m\in\mathbb{Z}^+_0:((\exists x\in\mathbb{Z}^+_0:(x+m = b))\lor(\exists s\in\mathbb{Z}^+_0:(\exists p\in\mathbb{Z}^+_0:((\neg(\exists x\in\mathbb{Z}^+_0:(p+x = 1)))\land(\neg(\exists x\in\mathbb{Z}^+_0:(\exists y\in\mathbb{Z}^+_0:(p = (x+2) \cdot (y+2)))))\land(\exists x\in\mathbb{Z}^+_0:(p = m+x+1))\land(\exists r\in\mathbb{Z}^+_0:((\forall x\in\mathbb{Z}^+_0:(\forall y\in\mathbb{Z}^+_0:((\neg(x \cdot y = r))\lor(x = 1)\lor(\exists z\in\mathbb{Z}^+_0:(x = z \cdot p)))))\land(\exists x\in\mathbb{Z}^+_0:(\exists y\in\mathbb{Z}^+_0:((\exists z\in\mathbb{Z}^+_0:(r = y+z+1))\land(s = r \cdot (p \cdot x + m) + y))))))\land(\forall u\in\mathbb{Z}^+_0:((\exists x\in\mathbb{Z}^+_0:(u = p+x))\lor(u = 0)\lor(u = n+1)\lor(\neg(\exists r\in\mathbb{Z}^+_0:((\forall x\in\mathbb{Z}^+_0:(\forall y\in\mathbb{Z}^+_0:((\neg(x \cdot y = r))\lor(x = 1)\lor(\exists z\in\mathbb{Z}^+_0:(x = z \cdot p)))))\land(\exists x\in\mathbb{Z}^+_0:(\exists y\in\mathbb{Z}^+_0:((\exists z\in\mathbb{Z}^+_0:(r = y+z+1))\land(s = r \cdot (p \cdot x + u) + y)))))))\lor(\exists v\in\mathbb{Z}^+_0:(\exists k\in\mathbb{Z}^+_0:((\neg(v = 0))\land((u = v \cdot (k+2))\lor(u = v \cdot (k+2) + 1))\land(\exists r\in\mathbb{Z}^+_0:((\forall x\in\mathbb{Z}^+_0:(\forall y\in\mathbb{Z}^+_0:((\neg(x \cdot y = r))\lor(x = 1)\lor(\exists z\in\mathbb{Z}^+_0:(x = z \cdot p)))))\land(\exists x\in\mathbb{Z}^+_0:(\exists y\in\mathbb{Z}^+_0:((\exists z\in\mathbb{Z}^+_0:(r = y+z+1))\land(s = r \cdot (p \cdot x + v) + y)))))))))))))))))$. Proposed by [i]Warren Bei[/i]

2005 Today's Calculation Of Integral, 87

Find the minimum value of $a\ (0<a<1)$ for which the following definite integral is minimized. \[ \int_0^{\pi} |\sin x-ax|\ dx \]

VI Soros Olympiad 1999 - 2000 (Russia), 11.5

Let $ n \ge 2$ and $x_1$, $x_2$, $...$, $x_n$ be real numbers from the segment $[1,\sqrt2]$. Prove that holds the inequality $$\frac{\sqrt{x_1^2-1}}{x_2}+\frac{\sqrt{x_2^2-1}}{x_3}+...+\frac{\sqrt{x_n^2-1}}{x_1} \le \frac{\sqrt2}{2} n.$$

2019 Belarus Team Selection Test, 2.3

$1019$ stones are placed into two non-empty boxes. Each second Alex chooses a box with an even amount of stones and shifts half of these stones into another box. Prove that for each $k$, $1\le k\le1018$, at some moment there will be a box with exactly $k$ stones. [i](O. Izhboldin)[/i]

Russian TST 2016, P3

Tags: incircle , geometry
The scalene triangle $ABC$ has incenter $I{}$ and circumcenter $O{}$. The points $B_A$ and $C_A$ are the projections of the points $B{}$ and $C{}$ onto the line $AI$. A circle with a diameter $B_AC_A$ intersects the line $BC$ at the points $K_A$ and $L_A$. [list=i] [*]Prove that the circumcircle of the triangle $AK_AL_A$ touches the incircle of the triangle $ABC$ at some point $T_A$. [*]Define the points $T_B$ and $T_C$ analogously. Prove that the lines $AT_A,BT_B$ and $CT_C$ intersect on the line $OI$. [/list]

2014 PUMaC Geometry B, 8

$ABCD$ is a cyclic quadrilateral with circumcenter $O$ and circumradius $7$. $AB$ intersects $CD$ at $E$, $DA$ intersects $CB$ at $F$. $OE=13$, $OF=14$. Let $\cos\angle FOE=\dfrac pq$, with $p$, $q$ coprime. Find $p+q$.

2018 Azerbaijan Senior NMO, 4

Numbers $1,2,3...,100$ are written on a board. $A$ and $B$ plays the following game: They take turns choosing a number from the board and deleting them. $A$ starts first. They sum all the deleted numbers. If after a player's turn (after he deletes a number on the board) the sum of the deleted numbers can't be expressed as difference of two perfect squares,then he loses, if not, then the game continues as usual. Which player got a winning strategy?