This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1984 AIME Problems, 6

Three circles, each of radius 3, are drawn with centers at $(14,92)$, $(17,76)$, and $(19,84)$. A line passing through $(17,76)$ is such that the total area of the parts of the three circles to one side of the line is equal to the total area of the parts of the three circles to the other side of it. What is the absolute value of the slope of this line?

2002 Spain Mathematical Olympiad, Problem 2

Tags: geometry
In the triangle $ABC$, $A'$ is the foot of the altitude to $A$, and $H$ is the orthocenter. $a)$ Given a positive real number $k = \frac{AA'}{HA'}$ , find the relationship between the angles $B$ and $C$, as a function of $k$. $b)$ If $B$ and $C$ are fixed, find the locus of the vertice $A$ for any value of $k$.

2016 China Second Round Olympiad, 3

Given $10$ points in the space such that each $4$ points are not lie on a plane. Connect some points with some segments such that there are no triangles or quadrangles. Find the maximum number of the segments.

2020 Kyiv Mathematical Festival, 1.2

Prove that (a) for each $n \ge 1$ $$\sum_{k=0}^n C_{n}^{k} \left(\frac{k}{n}-\frac{1}{2} \right)^2 \frac{1}{2^n}=\frac{1}{4n}$$ (b) for every n \ge m \ge 2 $$\sum_{\ell=0}^n \sum_{k_1+...+k_n=\ell,k_i=0,...,m} \frac{\ell!}{k_1!...k_n!} \frac{1}{(m+1)^n} \left(\frac{\ell}{n}-\frac{m}{2} \right)^2= \left(\frac{m^3-3m^2}{12(m+1)}+\frac{m}{2}-\frac{m}{3(m+1)}\right)n$$

2009 AMC 12/AHSME, 25

The set $ G$ is defined by the points $ (x,y)$ with integer coordinates, $ 3\le|x|\le7$, $ 3\le|y|\le7$. How many squares of side at least $ 6$ have their four vertices in $ G$? [asy]defaultpen(black+0.75bp+fontsize(8pt)); size(5cm); path p = scale(.15)*unitcircle; draw((-8,0)--(8.5,0),Arrow(HookHead,1mm)); draw((0,-8)--(0,8.5),Arrow(HookHead,1mm)); int i,j; for (i=-7;i<8;++i) { for (j=-7;j<8;++j) { if (((-7 <= i) && (i <= -3)) || ((3 <= i) && (i<= 7))) { if (((-7 <= j) && (j <= -3)) || ((3 <= j) && (j<= 7))) { fill(shift(i,j)*p,black); }}}} draw((-7,-.2)--(-7,.2),black+0.5bp); draw((-3,-.2)--(-3,.2),black+0.5bp); draw((3,-.2)--(3,.2),black+0.5bp); draw((7,-.2)--(7,.2),black+0.5bp); draw((-.2,-7)--(.2,-7),black+0.5bp); draw((-.2,-3)--(.2,-3),black+0.5bp); draw((-.2,3)--(.2,3),black+0.5bp); draw((-.2,7)--(.2,7),black+0.5bp); label("$-7$",(-7,0),S); label("$-3$",(-3,0),S); label("$3$",(3,0),S); label("$7$",(7,0),S); label("$-7$",(0,-7),W); label("$-3$",(0,-3),W); label("$3$",(0,3),W); label("$7$",(0,7),W);[/asy]$ \textbf{(A)}\ 125\qquad \textbf{(B)}\ 150\qquad \textbf{(C)}\ 175\qquad \textbf{(D)}\ 200\qquad \textbf{(E)}\ 225$

2013 Polish MO Finals, 2

There are given integers $a$ and $b$ such that $a$ is different from $0$ and the number $3+ a +b^2$ is divisible by $6a$. Prove that $a$ is negative.

1997 Switzerland Team Selection Test, 1

Tags: sequence , algebra
1. A finite sequence of integers $a_0,a_1,...,a_n$ is called quadratic if $|a_k -a_{k-1}| = k^2$ for $n\geq k\geq1$. (a) Prove that for any two integers $b$ and $c$, there exist a natural number $n$ and a quadratic sequence with $a_0 = b$ and $a_n =c$. (b) Find the smallest natural number $n$ for which there exists a quadratic sequence with $a_0 = 0$ and $a_n = 1997$

1986 Spain Mathematical Olympiad, 2

A segment $d$ is said to divide a segment $s$ if there is a natural number $n$ such that $s = nd = d+d+ ...+d$ ($n$ times). (a) Prove that if a segment $d$ divides segments $s$ and $s'$ with $s < s'$, then it also divides their difference $s'-s$. (b) Prove that no segment divides the side $s$ and the diagonal $s'$ of a regular pentagon (consider the pentagon formed by the diagonals of the given pentagon without explicitly computing the ratios).

2009 Purple Comet Problems, 4

Tags:
John, Paul, George, and Ringo baked a circular pie. Each cut a piece that was a sector of the circle. John took one-third of the whole pie. Paul took one-fourth of the whole pie. George took one-fifth of the whole pie. Ringo took one-sixth of the whole pie. At the end the pie had one sector remaining. Find the measure in degrees of the angle formed by this remaining sector.

2012 Thailand Mathematical Olympiad, 12

Let $a, b, c$ be positive integers. Show that if $\frac{a}{b} +\frac{b}{c} +\frac{c}{a}$ is an integer then $abc$ is a perfect cube.

2020 Purple Comet Problems, 14

Six different small books and three different large books sit on a shelf. Three children may each take either two small books or one large book. Find the number of ways the three children can select their books.

2005 AMC 10, 10

In $ \triangle ABC$, we have $ AC \equal{} BC \equal{} 7$ and $ AB \equal{} 2$. Suppose that $ D$ is a point on line $ AB$ such that $ B$ lies between $ A$ and $ D$ and $ CD \equal{} 8$. What is $ BD$? $ \textbf{(A)}\ 3\qquad \textbf{(B)}\ 2 \sqrt {3}\qquad \textbf{(C)}\ 4\qquad \textbf{(D)}\ 5\qquad \textbf{(E)}\ 4 \sqrt {2}$

1964 AMC 12/AHSME, 36

Tags: probability
In this figure the radius of the circle is equal to the altitude of the equilateral triangle $ABC$. The circle is made to roll along the side $AB$, remaining tangent to it at a variable point $T$ and intersecting lines $AC$ and $BC$ in variable points $M$ and $N$, respectively. Let $n$ be the number of degrees in arc $MTN$. Then $n$, for all permissible positions of the circle: $\textbf{(A) }\text{varies from }30^{\circ}\text{ to }90^{\circ}$ $\textbf{(B) }\text{varies from }30^{\circ}\text{ to }60^{\circ}$ $\textbf{(C) }\text{varies from }60^{\circ}\text{ to }90^{\circ}$ $\textbf{(D) }\text{remains constant at }30^{\circ}$ $\textbf{(E) }\text{remains constant at }60^{\circ}$ [asy] pair A = (0,0), B = (1,0), C = dir(60), T = (2/3,0); pair M = intersectionpoint(A--C,Circle((2/3,sqrt(3)/2),sqrt(3)/2)), N = intersectionpoint(B--C,Circle((2/3,sqrt(3)/2),sqrt(3)/2)); draw((0,0)--(1,0)--dir(60)--cycle); draw(Circle((2/3,sqrt(3)/2),sqrt(3)/2)); label("$A$",A,dir(210)); label("$B$",B,dir(-30)); label("$C$",C,dir(90)); label("$M$",M,dir(190)); label("$N$",N,dir(75)); label("$T$",T,dir(-90)); //Credit to bobthesmartypants for the diagram [/asy]

Novosibirsk Oral Geo Oly VIII, 2019.6

Point $A$ is located in this circle of radius $1$. An arbitrary chord is drawn through it, and then a circle of radius $2$ is drawn through the ends of this chord. Prove that all such circles touch some fixed circle, not depending from the initial choice of the chord.

2004 Czech and Slovak Olympiad III A, 3

Given a circle $S$ and its $121$ chords $P_i (i=1,2,\ldots,121)$, each with a point $A_i(i=1,2,\ldots,121)$ on it. Prove that there exists a point $X$ on the circumference of $S$ such that: there exist $29$ distinct indices $1\le k_1\le k_2\le\ldots\le k_{29}\le 121$, such that the angle formed by ${A_{k_j}}X$ and ${P_{k_j}}$ is smaller than $21$ degrees for every $j=1,2,\ldots,29$.

1984 Brazil National Olympiad, 6

There is a piece on each square of the solitaire board shown except for the central square. A move can be made when there are three adjacent squares in a horizontal or vertical line with two adjacent squares occupied and the third square vacant. The move is to remove the two pieces from the occupied squares and to place a piece on the third square. (One can regard one of the pieces as hopping over the other and taking it.) Is it possible to end up with a single piece on the board, on the square marked $X$?

2021-2022 OMMC, 7

Tags:
How many ordered triples of integers $(x,y,z)$ satisfy \[36x^2+100y^2+225z^2=12600?\] [i]Proposed by Bill Fei and Mahith Gottipati [/i]

2001 Denmark MO - Mohr Contest, 3

Tags: square , min , geometry
In the square $ABCD$ of side length $2$ the point $M$ is the midpoint of $BC$ and $P$ a point on $DC$. Determine the smallest value of $AP+PM$. [img]https://1.bp.blogspot.com/-WD8WXIE6DK4/XzcC9GYsa6I/AAAAAAAAMXg/vl2OrbAdChEYrRpemYmj6DiOrdOSqj_IgCLcBGAsYHQ/s178/2001%2BMohr%2Bp3.png[/img]

2022 Assara - South Russian Girl's MO, 7

In a $7\times 7\times 7$ cube, the unit cubes are colored white, black and gray colors so that for any two colors the number of cubes of these two colors are different. In this case, $N$ parallel rows of $7$ cubes were found, each of which there are more white cubes than gray and than black. Likewise, there were $N$ parallel rows of $7$ cubes, each of which contained gray there are more cubes than white and than black, and there are also N parallel rows of $7$ cubes, each of which contains more black cubes than white ones and than gray ones. What is the largest $N$ for which this is possible?

2011 Northern Summer Camp Of Mathematics, 3

Given an acute triangle $ABC$ such that $\angle C< \angle B< \angle A$. Let $I$ be the incenter of $ABC$. Let $M$ be the midpoint of the smaller arc $BC$, $N$ be the midpoint of the segment $BC$ and let $E$ be a point such that $NE=NI$. The line $ME$ intersects circumcircle of $ABC$ at $Q$ (different from $A, B$, and $C$). Prove that [b](i)[/b] The point $Q$ is on the smaller arc $AC$ of circumcircle of $ABC$. [b](ii)[/b] $BQ=AQ+CQ$

2001 AMC 12/AHSME, 23

A polynomial of degree four with leading coefficient 1 and integer coefficients has two zeros, both of which are integers. Which of the following can also be a zero of the polynomial? $ \textbf{(A)} \ \frac {1 \plus{} i \sqrt {11}}{2} \qquad \textbf{(B)} \ \frac {1 \plus{} i}{2} \qquad \textbf{(C)} \ \frac {1}{2} \plus{} i \qquad \textbf{(D)} \ 1 \plus{} \frac {i}{2} \qquad \textbf{(E)} \ \frac {1 \plus{} i \sqrt {13}}{2}$

1987 IMO Longlists, 73

Let $f(x)$ be a periodic function of period $T > 0$ defined over $\mathbb R$. Its first derivative is continuous on $\mathbb R$. Prove that there exist $x, y \in [0, T )$ such that $x \neq y$ and \[f(x)f'(y)=f'(x)f(y).\]

2009 Grand Duchy of Lithuania, 3

Tags: algebra , radical
Solve the equation $x^2+ 2 = 4\sqrt{x^3+1}$

2012 Bulgaria National Olympiad, 2

Let $Q(x)$ be a quadratic trinomial. Given that the function $P(x)=x^{2}Q(x)$ is increasing in the interval $(0,\infty )$, prove that: \[P(x) + P(y) + P(z) > 0\] for all real numbers $x,y,z$ such that $x+y+z>0$ and $xyz>0$.

2005 Poland - Second Round, 3

Prove that if the real numbers $a,b,c$ lie in the interval $[0,1]$, then \[\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le 2\]