This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2021 HMNT, 7

Tags: algebra
Let $f(x) = x^3 + 3x - 1$ have roots $ a, b, c$. Given that $\frac{1}{a^3 + b^3}+\frac{1}{b^3 + c^3}+\frac{1}{c^3 + a^3}$ can be written as $\frac{m}{n}$, where $m, n$ are positive integers and $gcd(m, n) = 1$, find $100m + n$.

2014 Bulgaria JBMO TST, 1

Tags: geometry
Points $M$ and $N$ lie on the sides $BC$ and $CD$ of the square $ABCD,$ respectively, and $\angle MAN = 45^{\circ}$. The circle through $A,B,C,D$ intersects $AM$ and $AN$ again at $P$ and $Q$, respectively. Prove that $MN || PQ.$

1975 Spain Mathematical Olympiad, 4

Prove that if the product of $n$ real and positive numbers is equal to $1$, its sum is greater than or equal to $n$.

2019 India PRMO, 11

Tags: trigonometry
How many distinct triangles $ABC$ are tjere, up to simplilarity, such that the magnitudes of the angles $A, B$ and $C$ in degrees are positive integers and satisfy $$\cos{A}\cos{B} + \sin{A}\sin{B}\sin{kC} = 1$$ for some positive integer $k$, where $kC$ does not exceet $360^{\circ}$?

Kyiv City MO 1984-93 - geometry, 1993.10.5

Prove that for the sides $a, b, c$, the angles $A, B, C$ and the area $S$ of the triangle holds $$\cot A+ \cot B + \cot C = \frac{a^2+b^2+c^2}{4S}.$$

2006 China Second Round Olympiad, 5

Tags: logarithm
Suppose $f(x) = x^3 + \log_2(x + \sqrt{x^2+1})$. For any $a,b \in \mathbb{R}$, to satisfy $f(a) + f(b) \ge 0$, the condition $a + b \ge 0$ is $ \textbf{(A)}\ \text{necessary and sufficient}\qquad\textbf{(B)}\ \text{not necessary but sufficient}\qquad\textbf{(C)}\ \text{necessary but not sufficient}\qquad$ $\textbf{(D)}\ \text{neither necessary nor sufficient}\qquad$

2023 Germany Team Selection Test, 2

Tags: geometry
Let $ABC$ be an acute-angled triangle with $AC > AB$, let $O$ be its circumcentre, and let $D$ be a point on the segment $BC$. The line through $D$ perpendicular to $BC$ intersects the lines $AO, AC,$ and $AB$ at $W, X,$ and $Y,$ respectively. The circumcircles of triangles $AXY$ and $ABC$ intersect again at $Z \ne A$. Prove that if $W \ne D$ and $OW = OD,$ then $DZ$ is tangent to the circle $AXY.$

1981 IMO Shortlist, 19

Tags: geometry , circles , area
A finite set of unit circles is given in a plane such that the area of their union $U$ is $S$. Prove that there exists a subset of mutually disjoint circles such that the area of their union is greater that $\frac{2S}{9}.$

2017 BMT Spring, 3

Tags: geometry
How many letters in the word UNCOPYRIGHTABLE have at least one line of symmetry?

2019 Ramnicean Hope, 3

Let be two $ 2\times 2 $ real matrices $ A,B, $ such that $ AB=\begin{pmatrix} 1&1\\1&2 \end{pmatrix} . $ Calculate $ \left((BA)^{-1} +BA\right)^{2019 } . $ [i]Dan Nedeianu[/i]

2010 Romanian Masters In Mathematics, 6

Given a polynomial $f(x)$ with rational coefficients, of degree $d \ge 2$, we define the sequence of sets $f^0(\mathbb{Q}), f^1(\mathbb{Q}), \ldots$ as $f^0(\mathbb{Q})=\mathbb{Q}$, $f^{n+1}(\mathbb{Q})=f(f^{n}(\mathbb{Q}))$ for $n\ge 0$. (Given a set $S$, we write $f(S)$ for the set $\{f(x)\mid x\in S\})$. Let $f^{\omega}(\mathbb{Q})=\bigcap_{n=0}^{\infty} f^n(\mathbb{Q})$ be the set of numbers that are in all of the sets $f^n(\mathbb{Q})$, $n\geq 0$. Prove that $f^{\omega}(\mathbb{Q})$ is a finite set. [i]Dan Schwarz, Romania[/i]

1996 Tournament Of Towns, (498) 5

Tags: area , geometry , square
The squares $ABMN$, $BCKL$ and $ACPQ$ are constructed outside triangle $ABC$. The difference between the areas of $AB MN$ and $BCKL$ is $d$. Find the difference between the areas of the squares with sides $NQ$ and $PK$ respectively, if $\angle ABC$ is (a) a right angle; (b) not necessarily a right angle. (A Gerko)

2007 Tournament Of Towns, 1

Tags:
(from The Good Soldier Svejk) Senior military doctor Bautze exposed $abccc$ malingerers among $aabbb$ draftees who claimed not to be fit for the military service. He managed to expose all but one draftees. (He would for sure expose this one too, if the lucky guy was not taken by a stroke at the very moment when the doctor yelled at him "Turn around !. . . ") How many malingerers were exposed by the vigilant doctor? Each digit substitutes a letter. The same digits substitute the same letters, while distinct digits substitute distinct letters. [i](1 point)[/i]

1993 Putnam, A3

Let $P$ be the set of all subsets of ${1, 2, ... , n}$. Show that there are $1^n + 2^n + ... + m^n$ functions $f : P \longmapsto {1, 2, ... , m}$ such that $f(A \cap B) = min( f(A), f(B))$ for all $A, B.$

2001 Dutch Mathematical Olympiad, 1

In a tournament, every team plays exactly once against every other team. One won match earns $3$ points for the winner and $0$ for the loser. With a draw both teams receive $1$ point each. At the end of the tournament it appears that all teams together have achieved $15$ points. The last team on the final list scored exactly $1$ point. The second to last team has not lost a match. a) How many teams participated in the tournament? b) How many points did the team score in second place in the final ranking?

2015 Greece JBMO TST, 4

Pupils of a school are divided into $112$ groups, of $11$ members each. Any two groups have exactly one common pupil. Prove that: a) there is a pupil that belongs to at least $12$ groups. b) there is a pupil that belongs to all the groups.

2014 Saint Petersburg Mathematical Olympiad, 5

On a cellular plane with a cell side equal to $1$, arbitrarily $100 \times 100$ napkin is thrown. It covers some nodes (the node lying on the border of a napkin, is also considered covered). What is the smallest number of lines (going not necessarily along grid lines) you can certainly cover all these nodes?

1992 China National Olympiad, 1

Let equation $x^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\dots +a_1x+a_0=0$ with real coefficients satisfy $0<a_0\le a_1\le a_2\le \dots \le a_{n-1}\le 1$. Suppose that $\lambda$ ($|\lambda|>1$) is a complex root of the equation, prove that $\lambda^{n+1}=1$.

2018 ELMO Shortlist, 3

Tags: inequalities
Let $a, b, c,x, y, z$ be positive reals such that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$. Prove that \[a^x+b^y+c^z\ge \frac{4abcxyz}{(x+y+z-3)^2}.\] [i]Proposed by Daniel Liu[/i]

2012 India Regional Mathematical Olympiad, 3

Let $a$ and $b$ be positive real numbers such that $a+b=1$. Prove that $a^ab^b+a^bb^a\le 1$.

2012 Iran Team Selection Test, 1

Find all positive integers $n \geq 2$ such that for all integers $i,j$ that $ 0 \leq i,j\leq n$ , $i+j$ and $ {n\choose i}+ {n \choose j}$ have same parity. [i]Proposed by Mr.Etesami[/i]

2012 India IMO Training Camp, 2

Show that there exist infinitely many pairs $(a, b)$ of positive integers with the property that $a+b$ divides $ab+1$, $a-b$ divides $ab-1$, $b>1$ and $a>b\sqrt{3}-1$

2014 AIME Problems, 7

Let $w$ and $z$ be complex numbers such that $|w| = 1$ and $|z| = 10$. Let $\theta = \arg\left(\tfrac{w-z}{z}\right)$. The maximum possible value of $\tan^2 \theta$ can be written as $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$. (Note that $\arg(w)$, for $w \neq 0$, denotes the measure of the angle that the ray from $0$ to $w$ makes with the positive real axis in the complex plane.

2015 China Second Round Olympiad, 4

Find all positive integers $k$ such that for any positive integer $n$, $2^{(k-1)n+1}$ does not divide $\frac{(kn)!}{n!}$.

2008 Moldova Team Selection Test, 2

We say the set $ \{1,2,\ldots,3k\}$ has property $ D$ if it can be partitioned into disjoint triples so that in each of them a number equals the sum of the other two. (a) Prove that $ \{1,2,\ldots,3324\}$ has property $ D$. (b) Prove that $ \{1,2,\ldots,3309\}$ hasn't property $ D$.