This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 Iran RMM TST, 1

Tags: ratio , geometry
Let $ABC $ be a triangle and $D $ be the feet of $A $-altitude.\\ $E,F $ are defined on segments $AD,BC $,respectively such that $\frac {AE}{DE}=\frac{BF}{CF} $.\\ Assume that $G $ lies on $AF $ such that $BG\perp AF $.Prove that $EF $ is tangent to the circumcircle of $CFG $. [i]Proposed by Mehdi Etesami Fard[/i]

1966 Miklós Schweitzer, 8

Prove that in Euclidean ring $ R$ the quotient and remainder are always uniquely determined if and only if $ R$ is a polynomial ring over some field and the value of the norm is a strictly monotone function of the degree of the polynomial. (To be precise, there are two trivial cases: $ R$ can also be a field or the null ring.) [i]E. Fried[/i]

2021 Nigerian Senior MO Round 3, 1

Find all triples of primes $(p,q,r)$ such that $p^q=2021+r^3$

1956 Moscow Mathematical Olympiad, 326

a) In the decimal expression of a positive number, $a$, all decimals beginning with the third after the decimal point, are deleted (i.e., we take an approximation of $a$ with accuracy to $0.01$ with deficiency). The number obtained is divided by $a$ and the quotient is similarly approximated with the same accuracy by a number $b$. What numbers $b$ can be thus obtained? Write all their possible values. b) same as (a) but with accuracy to $0.001$ c) same as (a) but with accuracy to $0.0001$

2014 HMNT, 1-5

[u]Townspeople and Goons[/u] In the city of Lincoln, there is an empty jail, at least two townspeople and at least one goon. A game proceeds over several days, starting with morning. $\bullet$ Each morning, one randomly selected unjailed person is placed in jail. If at this point all goons are jailed, and at least one townsperson remains, then the townspeople win. If at this point all townspeople are jailed and at least one goon remains, then the goons win. $\bullet$ Each evening, if there is at least one goon and at least one townsperson not in jail, then one randomly selected townsperson is jailed. If at this point there are at least as many goons remaining as townspeople remaining, then the goons win. The game ends immediately after any group wins. [b]p1. [/b]Find the probability that the townspeople win if there are initially two townspeople and one goon. [b]p2.[/b] Find the smallest positive integer $n$ such that, if there are initially $2n$ townspeople and $1$ goon, then the probability the townspeople win is greater than $50\%$. [b]p3.[/b] Find the smallest positive integer $n$ such that, if there are initially $n + 1$ townspeople and $n$ goons, then the probability the townspeople win is less than $1\%$. [b]p4[/b]. Suppose there are initially $1001$ townspeople and two goons. What is the probability that, when the game ends, there are exactly $1000$ people in jail? [b]p5.[/b] Suppose that there are initially eight townspeople and one goon. One of the eight townspeople is named Jester. If Jester is sent to jail during some morning, then the game ends immediately in his sole victory. (However, the Jester does not win if he is sent to jail during some night.) Find the probability that only the Jester wins.

1998 Mediterranean Mathematics Olympiad, 1

A square $ABCD$ is inscribed in a circle. If $M$ is a point on the shorter arc $AB$, prove that \[MC \cdot MD > 3\sqrt{3} \cdot MA \cdot MB.\]

2021 Iran Team Selection Test, 4

Find all functions $f : \mathbb{N} \rightarrow \mathbb{R}$ such that for all triples $a,b,c$ of positive integers the following holds : $$f(ac)+f(bc)-f(c)f(ab) \ge 1$$ Proposed by [i]Mojtaba Zare[/i]

2000 Junior Balkan Team Selection Tests - Romania, 4

Two identical squares havind a side length of $ 5\text{cm} $ are each divided separately into $ 5 $ regions through intersection with some lines. Show that we can color the regions of the first square with five colors and the regions of the second with the same five colors such that the sum of the areas of the resultant regions that have the same colors at superpositioning the two squares is at least $ 5\text{cm}^2. $

2019 Jozsef Wildt International Math Competition, W. 24

Tags: inequalities
If $a$, $b$, $c > 0$, prove that$$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{a+b}{a+b+2c}+\frac{b+c}{2a+b+c}+\frac{c+a}{a+2b+c}$$

2001 National Olympiad First Round, 30

Tags:
There are $n$ airports which form a regular $n$-gon. In the beginnig, there is exactly one plane at only $k$ airports. Each of the planes flies to one of the nearest airport each day. For which of the following ordered pairs $(n,k)$, it is impossible to gather all planes at a airport on one day however the planes are arranged initially? $ \textbf{(A)}\ (10,6) \qquad\textbf{(B)}\ (10,4) \qquad\textbf{(C)}\ (11,3) \qquad\textbf{(D)}\ (11,5) \qquad\textbf{(E)}\ (13,8) $

2013 Iran Team Selection Test, 3

For nonnegative integers $m$ and $n$, define the sequence $a(m,n)$ of real numbers as follows. Set $a(0,0)=2$ and for every natural number $n$, set $a(0,n)=1$ and $a(n,0)=2$. Then for $m,n\geq1$, define \[ a(m,n)=a(m-1,n)+a(m,n-1). \] Prove that for every natural number $k$, all the roots of the polynomial $P_{k}(x)=\sum_{i=0}^{k}a(i,2k+1-2i)x^{i}$ are real.

2010 Moldova Team Selection Test, 2

Prove that for any real number $ x$ the following inequality is true: $ \max\{|\sin x|, |\sin(x\plus{}2010)|\}>\dfrac1{\sqrt{17}}$

1960 IMO, 5

Consider the cube $ABCDA'B'C'D'$ (with face $ABCD$ directly above face $A'B'C'D'$). a) Find the locus of the midpoints of the segments $XY$, where $X$ is any point of $AC$ and $Y$ is any piont of $B'D'$; b) Find the locus of points $Z$ which lie on the segment $XY$ of part a) with $ZY=2XZ$.

2025 CMIMC Team, 4

Tags: team
A non-self intersecting hexagon $RANDOM$ is formed by assigning the labels $R, A, N, D, O, M$ in some order to the points $$(0,0), (10,0), (10,10), (0,10), (3,4), (6,2).$$ Let $a_{\text{max}}$ be the greatest possible area of $RANDOM$ and $a_{\text{min}}$ the least possible area of $RANDOM.$ Find $a_{\text{max}}-a_{\text{min}}.$

1980 Austrian-Polish Competition, 5

Let $A_1A_2A_3$ be a triangle and, for $1 \leq i \leq 3$, let $B_i$ be an interior point of edge opposite $A_i$. Prove that the perpendicular bisectors of $A_iB_i$ for $1 \leq i \leq 3$ are not concurrent.

2003 Turkey Junior National Olympiad, 2

Tags:
From the positive integers, $m,m+1,\dots,m+n$, only the sum of digits of $m$ and the sum of digits of $m+n$ are divisible by $8$. Find the maximum value of $n$.

1999 Romania National Olympiad, 4

Let $A$ be an integral domain and $A[X]$ be its associated ring of polynomials. For every integer $n \ge 2$ we define the map $\varphi_n : A[X] \to A[X],$ $\varphi_n(f)=f^n$ and we assume that the set $$M= \Big\{ n \in \mathbb{Z}_{\ge 2} : \varphi_n \mathrm{~is~an~endomorphism~of~the~ring~} A[X] \Big\}$$ is nonempty. Prove that there exists a unique prime number $p$ such that $M=\{p,p^2,p^3, \ldots\}.$

1991 IMTS, 5

Show that it is impossible to dissect an arbitary tetrahedron into six parts by planes or portions thereof so that each of the parts has a plane of symmetry.

1987 China Team Selection Test, 1

a.) For all positive integer $k$ find the smallest positive integer $f(k)$ such that $5$ sets $s_1,s_2, \ldots , s_5$ exist satisfying: [b]i.[/b] each has $k$ elements; [b]ii.[/b] $s_i$ and $s_{i+1}$ are disjoint for $i=1,2,...,5$ ($s_6=s_1$) [b]iii.[/b] the union of the $5$ sets has exactly $f(k)$ elements. b.) Generalisation: Consider $n \geq 3$ sets instead of $5$.

1974 Czech and Slovak Olympiad III A, 1

Let $\left(a_k\right)_{k=1}^\infty$ be a sequence of positive numbers such that \[a_{k-1}a_{k+1}\ge a_k^2\] for all $k>1.$ For $n\ge1$ denote \[b_n=\left(a_1a_2\cdots a_n\right)^{1/n}.\] Show that also the inequality \[b_{n-1}b_{n+1}\ge b_n^2\] holds for every $n>1.$

2008 AMC 8, 7

Tags:
If $\frac{3}{5}=\frac{M}{45}=\frac{60}{N}$, what is $M+N$? $\textbf{(A)}\ 27\qquad \textbf{(B)}\ 29 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 105\qquad \textbf{(E)}\ 127$

2013 Putnam, 3

Suppose that the real numbers $a_0,a_1,\dots,a_n$ and $x,$ with $0<x<1,$ satisfy \[\frac{a_0}{1-x}+\frac{a_1}{1-x^2}+\cdots+\frac{a_n}{1-x^{n+1}}=0.\] Prove that there exists a real number $y$ with $0<y<1$ such that \[a_0+a_1y+\cdots+a_ny^n=0.\]

2015 Sharygin Geometry Olympiad, 2

A circle passing through $A, B$ and the orthocenter of triangle $ABC$ meets sides $AC, BC$ at their inner points. Prove that $60^o < \angle C < 90^o$ . (A. Blinkov)

2016 Rioplatense Mathematical Olympiad, Level 3, 6

When the natural numbers are written one after another in an increasing way, you get an infinite succession of digits $123456789101112 ....$ Denote $A_k$ the number formed by the first $k$ digits of this sequence . Prove that for all positive integer $n$ there is a positive integer $m$ which simultaneously verifies the following three conditions: (i) $n$ divides $A_m$, (ii) $n$ divides $m$, (iii) $n$ divides the sum of the digits of $A_m$.

2016 Junior Balkan Team Selection Tests - Romania, 3

Let $M$ be the set of natural numbers $k$ for which there exists a natural number $n$ such that $$3^n \equiv k\pmod n.$$ Prove that $M$ has infinitely many elements.