This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1996 AMC 8, 14

Tags:
Six different digits from the set \[\{ 1,2,3,4,5,6,7,8,9\}\] are placed in the squares in the figure shown so that the sum of the entries in the vertical column is 23 and the sum of the entries in the horizontal row is 12. The sum of the six digits used is [asy] unitsize(18); draw((0,0)--(1,0)--(1,1)--(4,1)--(4,2)--(1,2)--(1,3)--(0,3)--cycle); draw((0,1)--(1,1)--(1,2)--(0,2)); draw((2,1)--(2,2)); draw((3,1)--(3,2)); label("$23$",(0.5,0),S); label("$12$",(4,1.5),E); [/asy] $\text{(A)}\ 27 \qquad \text{(B)}\ 29 \qquad \text{(C)}\ 31 \qquad \text{(D)}\ 33 \qquad \text{(E)}\ 35$

2012 May Olympiad, 5

There are 12 people such that for every person A and person B there exists a person C that is a friend to both of them. Determine the minimum number of pairs of friends and construct a graph where the edges represent friendships.

VI Soros Olympiad 1999 - 2000 (Russia), 11.3

A convex quadrilateral $ABCD$ has an inscribed circle touching its sides $AB$, $BC$, $CD$, $DA$ at the points $M$,$N$,$P$,$K$, respectively. Let $O$ be the center of the inscribed circle, the area of the quadrilateral $MNPK$ is equal to $8$. Prove the inequality $$2S \le OA \cdot OC+ OB \cdot OD.$$

2018 IMO Shortlist, C4

An [i]anti-Pascal[/i] triangle is an equilateral triangular array of numbers such that, except for the numbers in the bottom row, each number is the absolute value of the difference of the two numbers immediately below it. For example, the following is an anti-Pascal triangle with four rows which contains every integer from $1$ to $10$. \[\begin{array}{ c@{\hspace{4pt}}c@{\hspace{4pt}} c@{\hspace{4pt}}c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{4pt}}c } \vspace{4pt} & & & 4 & & & \\\vspace{4pt} & & 2 & & 6 & & \\\vspace{4pt} & 5 & & 7 & & 1 & \\\vspace{4pt} 8 & & 3 & & 10 & & 9 \\\vspace{4pt} \end{array}\] Does there exist an anti-Pascal triangle with $2018$ rows which contains every integer from $1$ to $1 + 2 + 3 + \dots + 2018$? [i]Proposed by Morteza Saghafian, Iran[/i]

Russian TST 2022, P2

The quadrilateral $ABCD$ is inscribed in the circle $\Gamma$. Let $I_B$ and $I_D$ be the centers of the circles $\omega_B$ and $\omega_D$ inscribed in the triangles $ABC$ and $ADC$, respectively. A common external tangent to $\omega_B$ and $\omega_D$ intersects $\Gamma$ at $K$ and $L{}$. Prove that $I_B,I_D,K$ and $L{}$ lie on the same circle.

2007 All-Russian Olympiad, 2

Given polynomial $P(x) = a_{0}x^{n}+a_{1}x^{n-1}+\dots+a_{n-1}x+a_{n}$. Put $m=\min \{ a_{0}, a_{0}+a_{1}, \dots, a_{0}+a_{1}+\dots+a_{n}\}$. Prove that $P(x) \ge mx^{n}$ for $x \ge 1$. [i]A. Khrabrov [/i]

2009 Purple Comet Problems, 18

On triangle $ABC$ let $D$ be the point on $AB$ so that $CD$ is an altitude of the triangle, and $E$ be the point on $BC$ so that $AE$ bisects angle $BAC.$ Let $G$ be the intersection of $AE$ and $CD,$ and let point $F$ be the intersection of side $AC$ and the ray $BG.$ If $AB$ has length $28,$ $AC$ has length $14,$ and $CD$ has length $10,$ then the length of $CF$ can be written as $\tfrac{k-m\sqrt{p}}{n}$ where $k, m, n,$ and $p$ are positive integers, $k$ and $n$ are relatively prime, and $p$ is not divisible by the square of any prime. Find $k - m + n + p.$

2015 Indonesia MO Shortlist, G4

Given an isosceles triangle $ABC$ with $AB = AC$, suppose $D$ is the midpoint of the $AC$. The circumcircle of the $DBC$ triangle intersects the altitude from $A$ at point $E$ inside the triangle $ABC$, and the circumcircle of the triangle $AEB$ cuts the side $BD$ at point $F$. If $CF$ cuts $AE$ at point $G$, prove that $AE = EG$.

2011 Iran MO (3rd Round), 3

Tags: geometry
We have connected four metal pieces to each other such that they have formed a tetragon in space and also the angle between two connected metal pieces can vary. In the case that the tetragon can't be put in the plane, we've marked a point on each of the pieces such that they are all on a plane. Prove that as the tetragon varies, that four points remain on a plane. [i]proposed by Erfan Salavati[/i]

2016 Thailand Mathematical Olympiad, 10

A [i]Pattano coin[/i] is a coin which has a blue side and a yellow side. A positive integer not exceeding $100$ is written on each side of every coin (the sides may have different integers). Two Pattano coins are [i]identical [/i] if the number on the blue side of both coins are equal and the number on the yellow side of both coins are equal. Two Pattano coins are [i]pairable [/i] if the number on the blue side of both coins are equal or the number on the yellow side of both coins are equal. Given $2559$ Pattano coins such that no two coins are identical. Show that at least one Pattano coin is pairable with at least $50$ other coins

2009 Balkan MO Shortlist, N3

Determine all integers $1 \le m, 1 \le n \le 2009$, for which \begin{align*} \prod_{i=1}^n \left( i^3 +1 \right) = m^2 \end{align*}

1995 Tournament Of Towns, (445) 1

Prove that if $a$, $b$ and $c$ are integers and the sums $$\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \,\,\,\, and \,\,\,\, \frac{a}{c}+\frac{c}{b}+\frac{b}{a}$$ are also integers, then we have $|a| = |v| = |c|$. (A Gribalko)

1994 Baltic Way, 7

Let $p>2$ be a prime number and \[1+\frac{1}{2^3}+\frac{1}{3^3}+\ldots +\frac{1}{(p-1)^3}=\frac{m}{n}\] where $m$ and $n$ are relatively prime. Show that $m$ is a multiple of $p$.

1999 Brazil Team Selection Test, Problem 2

If $a,b,c,d$ are Distinct Real no. such that $a = \sqrt{4+\sqrt{5+a}}$ $b = \sqrt{4-\sqrt{5+b}}$ $c = \sqrt{4+\sqrt{5-c}}$ $d = \sqrt{4-\sqrt{5-d}}$ Then $abcd = $

2006 Petru Moroșan-Trident, 1

Let be a natural number $ n\ge 4, $ and a group $ G $ for which the applications $ \iota ,\eta : G\longrightarrow G $ defined by $ \iota (g) =g^n ,\eta (g) =g^{2n} $ are endomorphisms. Prove that $ G $ is commutative if $ \iota $ is injective or surjective. [i]Gh. Andrei[/i]

2004 Germany Team Selection Test, 2

Let $n \geq 5$ be a given integer. Determine the greatest integer $k$ for which there exists a polygon with $n$ vertices (convex or not, with non-selfintersecting boundary) having $k$ internal right angles. [i]Proposed by Juozas Juvencijus Macys, Lithuania[/i]

2021 BMT, 17

Tags: algebra
Simplify $\sqrt[4]{17 + 12\sqrt2} - \sqrt[4]{17 - 12\sqrt2}$.

2023 AMC 8, 9

Tags:
Malaika is skiing on a mountain. The graph below shows her elevation, in meters, above the base of the mountain as she skis along a trail. In total, how many seconds does she spend at an elevation between $4$ and $7$ meters? [asy] // Diagram by TheMathGuyd. Found cubic, so graph is perfect. import graph; size(8cm); int i; for(i=1; i<9; i=i+1) { draw((-0.2,2i-1)--(16.2,2i-1), mediumgrey); draw((2i-1,-0.2)--(2i-1,16.2), mediumgrey); draw((-0.2,2i)--(16.2,2i), grey); draw((2i,-0.2)--(2i,16.2), grey); } Label f; f.p=fontsize(6); xaxis(-0.5,17.8,Ticks(f, 2.0),Arrow()); yaxis(-0.5,17.8,Ticks(f, 2.0),Arrow()); real f(real x) { return -0.03125 x^(3) + 0.75x^(2) - 5.125 x + 14.5; } draw(graph(f,0,15.225),currentpen+1); real dpt=2; real ts=0.75; transform st=scale(ts); label(rotate(90)*st*"Elevation (meters)",(-dpt,8)); label(st*"Time (seconds)",(8,-dpt)); [/asy] $\textbf{(A)}\ 6 \qquad \textbf{(B)}\ 8 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 12 \qquad \textbf{(E)}\ 14$

2025 Romania National Olympiad, 1

Let $M$ be a point in the plane, distinct from the vertices of $\triangle ABC$. Consider $N,P,Q$ the reflections of $M$ with respect to lines $AB, BC$ and $CA$, in this order. a) Prove that $N, P ,Q$ are collinear if and only if $M$ lies on the circumcircle of $\triangle ABC$. b) If $M$ does not lie on the circumcircle of $\triangle ABC$ and the centroids of triangles $\triangle ABC$ and $\triangle NPQ$ coincide, prove that $\triangle ABC$ is equilateral.

2000 Hungary-Israel Binational, 2

For a given integer $d$, let us define $S = \{m^{2}+dn^{2}| m, n \in\mathbb{Z}\}$. Suppose that $p, q$ are two elements of $S$ , where $p$ is prime and $p | q$. Prove that $r = q/p$ also belongs to $S$ .

2005 Balkan MO, 1

Tags: geometry , incenter
Let $ABC$ be an acute-angled triangle whose inscribed circle touches $AB$ and $AC$ at $D$ and $E$ respectively. Let $X$ and $Y$ be the points of intersection of the bisectors of the angles $\angle ACB$ and $\angle ABC$ with the line $DE$ and let $Z$ be the midpoint of $BC$. Prove that the triangle $XYZ$ is equilateral if and only if $\angle A = 60^\circ$.

2007 Balkan MO Shortlist, C1

For a given positive integer $n >2$, let $C_{1},C_{2},C_{3}$ be the boundaries of three convex $n-$ gons in the plane , such that $C_{1}\cap C_{2}, C_{2}\cap C_{3},C_{1}\cap C_{3}$ are finite. Find the maximum number of points of the sets $C_{1}\cap C_{2}\cap C_{3}$.

2004 Brazil Team Selection Test, Problem 2

Show that there exist infinitely many pairs of positive integers $(m,n)$ such that $\binom m{n-1}=\binom{m-1}n$.

2018 Purple Comet Problems, 19

Tags: algebra
Suppose that $a$ and $b$ are positive real numbers such that $3\log_{101}\left(\frac{1,030,301-a-b}{3ab}\right) = 3 - 2 \log_{101}(ab)$. Find $101 - \sqrt[3]{a}- \sqrt[3]{b}$.

2000 Manhattan Mathematical Olympiad, 4

Tags:
Is it possible to place a number of circles inside a square with side 1 cm., such that the sum of radii of all the circles is greater than $2000$ cm., and no two circles have overlapping interiors?