This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1990 Romania Team Selection Test, 4

Let $M$ be a point on the edge $CD$ of a tetrahedron $ABCD$ such that the tetrahedra $ABCM$ and $ABDM$ have the same total areas. We denote by $\pi_{AB}$ the plane $ABM$. Planes $\pi_{AC},...,\pi_{CD}$ are analogously defined. Prove that the six planes $\pi_{AB},...,\pi_{CD}$ are concurrent in a certain point $N$, and show that $N$ is symmetric to the incenter $I$ with respect to the barycenter $G$.

2019 Novosibirsk Oral Olympiad in Geometry, 6

Point $A$ is located in this circle of radius $1$. An arbitrary chord is drawn through it, and then a circle of radius $2$ is drawn through the ends of this chord. Prove that all such circles touch some fixed circle, not depending from the initial choice of the chord.

2014 AMC 10, 7

Tags: inequalities
Nonzero real numbers $x$, $y$, $a$, and $b$ satisfy $x < a$ and $y < b$. How many of the following inequalities must be true? (I) $x+y < a+b$ (II) $x-y < a-b$ (III) $xy < ab$ (IV) $\frac{x}{y} < \frac{a}{b}$ ${ \textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}}\ 3\qquad\textbf{(E)}\ 4$

2010 IMO Shortlist, 8

Given six positive numbers $a,b,c,d,e,f$ such that $a < b < c < d < e < f.$ Let $a+c+e=S$ and $b+d+f=T.$ Prove that \[2ST > \sqrt{3(S+T)\left(S(bd + bf + df) + T(ac + ae + ce) \right)}.\] [i]Proposed by Sung Yun Kim, South Korea[/i]

2011 NIMO Problems, 13

For real $\theta_i$, $i = 1, 2, \dots, 2011$, where $\theta_1 = \theta_{2012}$, find the maximum value of the expression \[ \sum_{i=1}^{2011} \sin^{2012} \theta_i \cos^{2012} \theta_{i+1}. \] [i]Proposed by Lewis Chen [/i]

2022 CCA Math Bonanza, L1.2

Tags:
Xonathan Jue goes to the casino with exactly \$1000. Each week, he has a $1/3$ chance of breaking even and $2/3$ chance of losing \$500. Evaluate the expected amount of weeks before he loses everything. [i]2022 CCA Math Bonanza Lightning Round 1.2[/i]

1997 Slovenia Team Selection Test, 4

Let $ABC$ be an equilateral triangle and let $P$ be a point in its interior. Let the lines $AP$, $BP$, $CP$ meet the sides $BC$, $CA$, $AB$ at the points $A_1$, $B_1$, $C_1$, respectively. Prove that $A_1B_1 \cdot B_1C_1 \cdot C_1A_1 \ge A_1B \cdot B_1C \cdot C_1A$.

1950 Moscow Mathematical Olympiad, 176

Let $a, b, c$ be the lengths of the sides of a triangle and $A, B, C$, the opposite angles. Prove that $$Aa + Bb + Cc \ge \frac{Ab + Ac + Ba + Bc + Ca + Cb}{2}$$

2022 Kyiv City MO Round 1, Problem 3

You are given $n$ not necessarily distinct real numbers $a_1, a_2, \ldots, a_n$. Let's consider all $2^n-1$ ways to select some nonempty subset of these numbers, and for each such subset calculate the sum of the selected numbers. What largest possible number of them could have been equal to $1$? For example, if $a = [-1, 2, 2]$, then we got $3$ once, $4$ once, $2$ twice, $-1$ once, $1$ twice, so the total number of ones here is $2$. [i](Proposed by Anton Trygub)[/i]

2015 Turkey EGMO TST, 4

Find the all $(m,n)$ integer pairs satisfying $m^4+2n^3+1=mn^3+n$.

1991 Putnam, A3

Find all real polynomials $ p(x)$ of degree $ n \ge 2$ for which there exist real numbers $ r_1 < r_2 < ... < r_n$ such that (i) $ p(r_i) \equal{} 0, 1 \le i \le n$, and (ii) $ p' \left( \frac {r_i \plus{} r_{i \plus{} 1}}{2} \right) \equal{} 0, 1 \le i \le n \minus{} 1$. [b]Follow-up:[/b] In terms of $ n$, what is the maximum value of $ k$ for which $ k$ consecutive real roots of a polynomial $ p(x)$ of degree $ n$ can have this property? (By "consecutive" I mean we order the real roots of $ p(x)$ and ignore the complex roots.) In particular, is $ k \equal{} n \minus{} 1$ possible for $ n \ge 3$?

2021 IMC, 7

Let $D \subseteq \mathbb{C}$ be an open set containing the closed unit disk $\{z : |z| \leq 1\}$. Let $f : D \rightarrow \mathbb{C}$ be a holomorphic function, and let $p(z)$ be a monic polynomial. Prove that $$ |f(0)| \leq \max_{|z|=1} |f(z)p(z)| $$

2020 Kosovo National Mathematical Olympiad, 1

Compare the following two numbers: $2^{2^{2^{2^{2}}}}$ and $3^{3^{3^{3}}}$.

2004 German National Olympiad, 2

Let $k$ be a circle with center $M.$ There is another circle $k_1$ whose center $M_1$ lies on $k,$ and we denote the line through $M$ and $M_1$ by $g.$ Let $T$ be a point on $k_1$ and inside $k.$ The tangent $t$ to $k_1$ at $T$ intersects $k$ in two points $A$ and $B.$ Denote the tangents (diifferent from $t$) to $k_1$ passing through $A$ and $B$ by $a$ and $b$, respectively. Prove that the lines $a,b,$ and $g$ are either concurrent or parallel.

2024 5th Memorial "Aleksandar Blazhevski-Cane", P2

Let $x,y$ and $z$ be positive real numbers such that $xy+z^2=8$. Determine the smallest possible value of the expression $$\frac{x+y}{z}+\frac{y+z}{x^2}+\frac{z+x}{y^2}.$$

2021 Alibaba Global Math Competition, 7

A subset $Q \subset H^s(\mathbb{R})$ is said to be equicontinuous if for any $\varepsilon>0$, $\exists \delta>0$ such that \[\|f(x+h)-f(x)\|_{H^s}<\varepsilon, \quad \forall \vert h\vert<\delta, \quad f \in Q.\] Fix $r<s$, given a bounded sequence of functions $f_n \in H^s(\mathbb{R}$. If $f_n$ converges in $H^r(\mathbb{R})$ and equicontinuous in $H^s(\mathbb{R})$, show that it also converges in $H^s(\mathbb{R})$.

2020 Ukrainian Geometry Olympiad - April, 4

On the sides $AB$ and $AD$ of the square $ABCD$, the points $N$ and $P$ are selected respectively such that $NC=NP$. The point $Q$ is chosen on the segment $AN$ so that $\angle QPN = \angle NCB$. Prove that $2\angle BCQ = \angle AQP$.

2005 Germany Team Selection Test, 2

Tags: inequalities
Let n be a positive integer, and let $a_1$, $a_2$, ..., $a_n$, $b_1$, $b_2$, ..., $b_n$ be positive real numbers such that $a_1\geq a_2\geq ...\geq a_n$ and $b_1\geq a_1$, $b_1b_2\geq a_1a_2$, $b_1b_2b_3\geq a_1a_2a_3$, ..., $b_1b_2...b_n\geq a_1a_2...a_n$. Prove that $b_1+b_2+...+b_n\geq a_1+a_2+...+a_n$.

1986 AIME Problems, 8

Tags: logarithm
Let $S$ be the sum of the base 10 logarithms of all the proper divisors of 1000000. What is the integer nearest to $S$?

1989 Tournament Of Towns, (221) 5

We are given $N$ lines ($N > 1$ ) in a plane, no two of which are parallel and no three of which have a point in common. Prove that it is possible to assign, to each region of the plane determined by these lines, a non-zero integer of absolute value not exceeding $N$ , such that the sum of the integers o n either side of any of the given lines is equal to $0$ . (S . Fomin, Leningrad)

1991 Austrian-Polish Competition, 4

Let $P(x)$ be a real polynomial with $P(x) \ge 0$ for $0 \le x \le 1$. Show that there exist polynomials $P_i (x) (i = 0, 1,2)$ with $P_i (x) \ge 0$ for all real x such that $P (x) = P_0 (x) + xP_1 (x)( 1- x)P_2 (x)$.

1965 AMC 12/AHSME, 13

Let $ n$ be the number of number-pairs $ (x,y)$ which satisfy $ 5y \minus{} 3x \equal{} 15$ and $ x^2 \plus{} y^2 \le 16$. Then $ n$ is: $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \text{more than two, but finite} \qquad \textbf{(E)}\ \text{greater than any finite number}$

2013 QEDMO 13th or 12th, 6

A composite natural number $n$ is called [i]happy [/i] if at most one of the numbers $2^{2^n}+ 1$ and $6^{2^n}+ 1$ is prime. Show that there are infinitely many happy numbers.

2017 China Team Selection Test, 2

Tags: geometry
In $\varDelta{ABC}$,the excircle of $A$ is tangent to segment $BC$,line $AB$ and $AC$ at $E,D,F$ respectively.$EZ$ is the diameter of the circle.$B_1$ and $C_1$ are on $DF$, and $BB_1\perp{BC}$,$CC_1\perp{BC}$.Line $ZB_1,ZC_1$ intersect $BC$ at $X,Y$ respectively.Line $EZ$ and line $DF$ intersect at $H$,$ZK$ is perpendicular to $FD$ at $K$.If $H$ is the orthocenter of $\varDelta{XYZ}$,prove that:$H,K,X,Y$ are concyclic.

2020 AIME Problems, 3

Tags: logarithm
The value of $x$ that satisfies $\log_{2^x} 3^{20} = \log_{2^{x+3}} 3^{2020}$ can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.