This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2017 Brazil Team Selection Test, 3

Let $a$ be a positive integer which is not a perfect square, and consider the equation \[k = \frac{x^2-a}{x^2-y^2}.\] Let $A$ be the set of positive integers $k$ for which the equation admits a solution in $\mathbb Z^2$ with $x>\sqrt{a}$, and let $B$ be the set of positive integers for which the equation admits a solution in $\mathbb Z^2$ with $0\leq x<\sqrt{a}$. Show that $A=B$.

2023 Romania Team Selection Test, P1

Tags: geometry
Let $ABC$ be an acute-angled triangle with $AC > AB$, let $O$ be its circumcentre, and let $D$ be a point on the segment $BC$. The line through $D$ perpendicular to $BC$ intersects the lines $AO, AC,$ and $AB$ at $W, X,$ and $Y,$ respectively. The circumcircles of triangles $AXY$ and $ABC$ intersect again at $Z \ne A$. Prove that if $W \ne D$ and $OW = OD,$ then $DZ$ is tangent to the circle $AXY.$

2019 CCA Math Bonanza, L1.2

Tags:
At Kanye Crest Academy, employees get paid in CCA Math Bananas$^{\text{TM}}$. At the end of $2018$, Professor Shian Bray was given a $10\%$ pay raise from his salary at the end of $2017$. However, inflation caused the worth of a CCA Math Banana$^{\text{TM}}$ to decrease by $1\%$. If Prof. Bray's salary at the end of $2017$ was worth one million dollars, how much (in dollars) was Prof. Bray's salary worth at the end of $2018$? Assume that the value of the dollar has not changed. [i]2019 CCA Math Bonanza Lightning Round #1.2[/i]

2023 Malaysia IMONST 2, 5

Ruby writes the numbers $1, 2, 3, . . . , 10$ on the whiteboard. In each move, she selects two distinct numbers, $a$ and $b$, erases them, and replaces them with $a+b-1$. She repeats this process until only one number, $x$, remains. What are all the possible values of $x$?

2019 Gulf Math Olympiad, 1

Let $ABCD$ be a trapezium (trapezoid) with $AD$ parallel to $BC$ and $J$ be the intersection of the diagonals $AC$ and $BD$. Point $P$ a chosen on the side $BC$ such that the distance from $C$ to the line $AP$ is equal to the distance from $B$ to the line $DP$. [i]The following three questions 1, 2 and 3 are independent, so that a condition in one question does not apply in another question.[/i] 1.Suppose that $Area( \vartriangle AJB) =6$ and that $Area(\vartriangle BJC) = 9$. Determine $Area(\vartriangle APD)$. 2. Find all points $Q$ on the plane of the trapezium such that $Area(\vartriangle AQB) = Area(\vartriangle DQC)$. 3. Prove that $PJ$ is the angle bisector of $\angle APD$.

2011 Sharygin Geometry Olympiad, 7

Circles $\omega$ and $\Omega$ are inscribed into the same angle. Line $\ell$ meets the sides of angles, $\omega$ and $\Omega$ in points $A$ and $F, B$ and $C, D$ and $E$ respectively (the order of points on the line is $A,B,C,D,E, F$). It is known that$ BC = DE$. Prove that $AB = EF$.

2011 Peru IMO TST, 6

Tags: sequence , algebra
Let $a_1, a_2, \cdots , a_n$ be real numbers, with $n\geq 3,$ such that $a_1 + a_2 +\cdots +a_n = 0$ and $$ 2a_k\leq a_{k-1} + a_{k+1} \ \ \ \text{for} \ \ \ k = 2, 3, \cdots , n-1.$$ Find the least number $\lambda(n),$ such that for all $k\in \{ 1, 2, \cdots, n\} $ it is satisfied that $|a_k|\leq \lambda (n)\cdot \max \{|a_1|, |a_n|\} .$

MathLinks Contest 4th, 6.1

Find all positive integers $a, b, c, d$, such that the following equality takes place for an infinity of positive integers $n$ $$(1^a + 2^a +...+ n^a)^b = (1^c + 2^c +...+ n^c)^d$$

2013-2014 SDML (Middle School), 4

Equilateral triangle $ABC$ has side length $6$. Circles with centers at $A$, $B$, and $C$ are drawn such that their respective radii $r_A$, $r_B$, and $r_C$ form an arithmetic sequence with $r_A<r_B<r_C$. If the shortest distance between circles $A$ and $B$ is $3.5$, and the shortest distance between circles $A$ and $C$ is $3$, then what is the area of the shaded region? Express your answer in terms of pi. [asy] size(8cm); draw((0,0)--(6,0)--6*dir(60)--cycle); draw(circle((0,0),1)); draw(circle(6*dir(60),1.5)); draw(circle((6,0),2)); filldraw((0,0)--arc((0,0),1,0,60)--cycle, grey); filldraw(6*dir(60)--arc(6*dir(60),1.5,240,300)--cycle, grey); filldraw((6,0)--arc((6,0),2,120,180)--cycle, grey); label("$A$",(0,0),SW); label("$B$",6*dir(60),N); label("$C$",(6,0),SE); [/asy]

2003 Germany Team Selection Test, 3

For $n$ an odd positive integer, the unit squares of an $n\times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A it tromino is an $L$-shape formed by three connected unit squares. For which values of $n$ is it possible to cover all the black squares with non-overlapping trominos? When it is possible, what is the minimum number of trominos needed?

2020 Purple Comet Problems, 6

Tags: algebra
Alex launches his boat into a river and heads upstream at a constant speed. At the same time at a point $8$ miles upstream from Alex, Alice launches her boat and heads downstream at a constant speed. Both boats move at $6$ miles per hour in still water, but the river is owing downstream at $2\frac{3}{10}$ miles per hour. Alex and Alice will meet at a point that is $\frac{m}{n}$ miles from Alex's starting point, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2008 China Team Selection Test, 3

Let $ 0 < x_{1}\leq\frac {x_{2}}{2}\leq\cdots\leq\frac {x_{n}}{n}, 0 < y_{n}\leq y_{n \minus{} 1}\leq\cdots\leq y_{1},$ Prove that $ (\sum_{k \equal{} 1}^{n}x_{k}y_{k})^2\leq(\sum_{k \equal{} 1}^{n}y_{k})(\sum_{k \equal{} 1}^{n}(x_{k}^2 \minus{} \frac {1}{4}x_{k}x_{k \minus{} 1})y_{k}).$ where $ x_{0} \equal{} 0.$

2024 Euler Olympiad, Round 1, 4

Find the number of ordered pairs $(a, b, c, d)$ of positive integers satisfying the equation: \[a + 2b + 3c + 1000d = 2024.\] [i]Proposed by Irakli Khutsishvili, Georgia [/i]

1979 AMC 12/AHSME, 14

Tags: induction
In a certain sequence of numbers, the first number is $1$, and, for all $n\ge 2$, the product of the first $n$ numbers in the sequence is $n^2$. The sum of the third and the fifth numbers in the sequence is $\textbf{(A) }\frac{25}{9}\qquad\textbf{(B) }\frac{31}{15}\qquad\textbf{(C) }\frac{61}{16}\qquad\textbf{(D) }\frac{576}{225}\qquad\textbf{(E) }34$

2015 Princeton University Math Competition, A5

Tags: algebra
Since counting the numbers from 1 to 100 wasn't enough to stymie Gauss, his teacher devised another clever problem that he was sure would stump Gauss. Defining $\zeta_{15} = e^{2\pi i/15}$ where $i = \sqrt{-1}$, the teacher wrote the 15 complex numbers $\zeta_{15}^k$ for integer $0 \le k < 15$ on the board. Then, he told Gauss: On every turn, erase two random numbers $a, b$, chosen uniformly randomly, from the board and then write the term $2ab - a - b + 1$ on the board instead. Repeat this until you have one number left. What is the expected value of the last number remaining on the board?

1997 Baltic Way, 3

Let $x_1=1$ and $x_{n+1} =x_n+\left\lfloor \frac{x_n}{n}\right\rfloor +2$, for $n=1,2,3,\ldots $ where $x$ denotes the largest integer not greater than $x$. Determine $x_{1997}$.

2019 PUMaC Individual Finals A, B, A3

Let $ABCDEF$ be a convex hexagon with area $S$ such that $AB \parallel DE$, $BC \parallel EF$, $CD \parallel FA$ holds, and whose all angles are obtuse and opposite sides are not the same length. Prove that the following inequality holds: $$A_{ABC} + A_{BCD} + A_{CDE} + A_{DEF} + A_{EFA} + A_{FAB} < S$$ , where $A_{XYZ}$ is the area of triangle $XYZ$

2020 New Zealand MO, 2

Let $ABCD$ be a square and let $X$ be any point on side $BC$ between $B$ and $C$. Let $Y$ be the point on line $CD$ such that $BX = YD$ and $D$ is between $C$ and $Y$ . Prove that the midpoint of $XY$ lies on diagonal $BD$.

2003 Gheorghe Vranceanu, 3

Let be a sequence of functions $ a_n:\mathbb{R}\longrightarrow\mathbb{Z} $ defined as $ a_n(x)=\sum_{i=1}^n (-1)^i\lfloor xi\rfloor . $ [b]a)[/b] Find the real numbers $ y $ such that $ \left( a_n(y) \right)_{n\ge 1} $ converges to $ 1. $ [b]b)[/b] Find the real numbers $ z $ such that $ \left( a_n(z) \right)_{n\ge 1} $ converges.

2017 Korea Winter Program Practice Test, 2

Find all functions $f : \mathbb{N} \to \mathbb{N}$ satisfying the following conditions: [list] [*]For every $n \in \mathbb{N}$, $f^{(n)}(n) = n$. (Here $f^{(1)} = f$ and $f^{(k)} = f^{(k-1)} \circ f$.) [*]For every $m, n \in \mathbb{N}$, $\lvert f(mn) - f(m) f(n) \rvert < 2017$. [/list]

2012 Tuymaada Olympiad, 3

Prove that $N^2$ arbitrary distinct positive integers ($N>10$) can be arranged in a $N\times N$ table, so that all $2N$ sums in rows and columns are distinct. [i]Proposed by S. Volchenkov[/i]

2002 IMC, 6

For an $n\times n$ matrix with real entries let $||M||=\sup_{x\in \mathbb{R}^{n}\setminus\{0\}}\frac{||Mx||_{2}}{||x||_{2}}$, where $||\cdot||_{2}$ denotes the Euclidean norm on $\mathbb{R}^{n}$. Assume that an $n\times n$ matrxi $A$ with real entries satisfies $||A^{k}-A^{k-1}||\leq\frac{1}{2002k}$ for all positive integers $k$. Prove that $||A^{k}||\leq 2002$ for all positive integers $k$.

Russian TST 2020, P2

Tags: algebra
Let $n\geqslant 2$ be a positive integer and $a_1,a_2, \ldots ,a_n$ be real numbers such that \[a_1+a_2+\dots+a_n=0.\] Define the set $A$ by \[A=\left\{(i, j)\,|\,1 \leqslant i<j \leqslant n,\left|a_{i}-a_{j}\right| \geqslant 1\right\}\] Prove that, if $A$ is not empty, then \[\sum_{(i, j) \in A} a_{i} a_{j}<0.\]

2005 Germany Team Selection Test, 3

We have $2p-1$ integer numbers, where $p$ is a prime number. Prove that we can choose exactly $p$ numbers (from these $2p-1$ numbers) so that their sum is divisible by $p$.

2017 Kürschák Competition, 3

An $n$ by $n$ table has an integer in each cell, such that no two cells within a row share the same number. Prove that it is possible to permute the elements within each row to obtain a table that has $n$ distinct numbers in each column.