Found problems: 85335
1995 All-Russian Olympiad, 5
The sequence $a_1, a_2, ...$ of natural numbers satisfies $GCD(a_i, a_j)=GCD(i, j)$ for all $i \neq j$. Prove that $a_i=i$ for all $i$.
2012 Argentina Cono Sur TST, 2
Find all four-element sets of positive integers $\{w,x,y,z\}$ such that $w^x+w^y=w^z$.
2006 AMC 8, 6
The letter T is formed by placing two $ 2\times 4$ inch rectangles next to each other, as shown. What is the perimeter of the T, in inches?
[asy]size(150);
draw((0,6)--(4,6)--(4,4)--(3,4)--(3,0)--(1,0)--(1,4)--(0,4)--cycle, linewidth(1));[/asy]
$ \textbf{(A)}\ 12 \qquad
\textbf{(B)}\ 16 \qquad
\textbf{(C)}\ 20 \qquad
\textbf{(D)}\ 22 \qquad
\textbf{(E)}\ 24$
2000 All-Russian Olympiad Regional Round, 10.6
Given a natural number $a_0$, we construct the sequence $\{a_n\}$ as follows $a_{n+1} = a^2_n-5$ if $a_n$ is odd, and $\frac{a_n}{2}$ if $a_n$ is even. Prove that for any odd $a_0 > 5$ in the sequence $\{a_n\}$ arbitrarily large numbers will occur.
2016 Turkey EGMO TST, 1
Prove that
\[ x^4y+y^4z+z^4x+xyz(x^3+y^3+z^3) \geq (x+y+z)(3xyz-1) \]
for all positive real numbers $x, y, z$.
DMM Individual Rounds, 1998
[b]p1.[/b] Find the greatest integer $n$ such that $n \log_{10} 4$ does not exceed $\log_{10} 1998$.
[b]p2.[/b] Rectangle $ABCD$ has sides $AB = CD = 12/5$, $BC = DA = 5$. Point $P$ is on $AD$ with $\angle BPC = 90^o$. Compute $BP + PC$.
[b]p3.[/b] Compute the number of sequences of four decimal digits $(a, b, c, d)$ (each between $0$ and $9$ inclusive) containing no adjacent repeated digits. (That is, each digit is distinct from the digits directly before and directly after it.)
[b]p4.[/b] Solve for $t$, $-\pi/4 \le t \le \pi/4 $:
$$\sin^3 t + \sin^2 t \cos t + \sin t \cos^2 t + \cos^3 t =\frac{\sqrt6}{2}$$
[b]p5.[/b] Find all integers $n$ such that $n - 3$ divides $n^2 + 2$.
[b]p6.[/b] Find the maximum number of bishops that can occupy an $8 \times 8$ chessboard so that no two of the bishops attack each other. (Bishops can attack an arbitrary number of squares in any diagonal direction.)
[b]p7.[/b] Points $A, B, C$, and $D$ are on a Cartesian coordinate system with $A = (0, 1)$, $B = (1, 1)$, $C = (1,-1)$, and $D = (-1, 0)$. Compute the minimum possible value of $PA + PB + PC + PD$ over all points $P$.
[b]p8.[/b] Find the number of distinct real values of $x$ which satisfy
$$(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10)+(1^2 \cdot 3^2\cdot 5^2\cdot 7^2\cdot 9^2)/2^{10} = 0.$$
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 CMIMC, 8
A positive integer $n$ is [i]brgorable[/i] if it is possible to arrange the numbers $1, 1, 2, 2, ..., n, n$ such that between any two $k$'s there are exactly $k$ numbers (for example, $n=2$ is not brgorable, but $n = 3$ is as demonstrated by $3, 1, 2, 1, 3, 2$). How many brgorable numbers are less than 2019?
1970 Canada National Olympiad, 6
Given three non-collinear points $A,B,C$, construct a circle with centre $C$ such that the tangents from $A$ and $B$ are parallel.
1999 Poland - Second Round, 4
Let $P$ be a point inside a triangle $ABC$ such that $\angle PAB = \angle PCA$ and $\angle PAC =
\angle PBA$.
If $O \ne P$ is the circumcenter of $\triangle ABC$, prove that $\angle APO$ is right.
2014 Online Math Open Problems, 7
Define the function $f(x, y, z)$ by\[f(x, y, z) = x^{y^z} - x^{z^y} + y^{z^x} - y^{x^z} + z^{x^y}.\]Evaluate $f(1, 2, 3) + f(1, 3, 2) + f(2, 1, 3) + f(2, 3, 1) + f(3, 1, 2) + f(3, 2, 1)$.
[i]Proposed by Robin Park[/i]
2018 Saint Petersburg Mathematical Olympiad, 5
Can we draw $\triangle ABC$ and points $X,Y$, such that $AX=BY=AB$, $ BX = CY = BC$,
$CX = AY = CA$?
2017 CMI B.Sc. Entrance Exam, 5
Each integer is colored with exactly one of $3$ possible colors -- black, red or white -- satisfying the following two rules : the negative of a black number must be colored white, and the sum of two white numbers (not necessarily distinct) must be colored black.
[b](a)[/b] Show that, the negative of a white number must be colored black and the sum of two black numbers must be colored white.
[b](b)[/b] Determine all possible colorings of the integers that satisfy these rules.
2015 Federal Competition For Advanced Students, P2, 5
Let I be the incenter of triangle $ABC$ and let $k$ be a circle through the points $A$ and $B$. The circle intersects
* the line $AI$ in points $A$ and $P$
* the line $BI$ in points $B$ and $Q$
* the line $AC$ in points $A$ and $R$
* the line $BC$ in points $B$ and $S$
with none of the points $A,B,P,Q,R$ and $S$ coinciding and such that $R$ and $S$ are interior points of the line segments $AC$ and $BC$, respectively.
Prove that the lines $PS$, $QR$, and $CI$ meet in a single point.
(Stephan Wagner)
2011 Benelux, 4
Abby and Brian play the following game: They first choose a positive integer $N$. Then they write numbers on a blackboard in turn. Abby starts by writing a $1$. Thereafter, when one of them has written the number $n$, the other writes down either $n + 1$ or $2n$, provided that the number is not greater than $N$. The player who writes $N$ on the blackboard wins.
(a) Determine which player has a winning strategy if $N = 2011$.
(b) Find the number of positive integers $N\leqslant2011$ for which Brian has a winning strategy.
(This is based on ISL 2004, Problem C5.)
1980 AMC 12/AHSME, 16
Four of the eight vertices of a cube are the vertices of a regular tetrahedron. Find the ratio of the surface area of the cube to the surface area of the tetrahedron.
$\text{(A)} \ \sqrt 2 \qquad \text{(B)} \ \sqrt 3 \qquad \text{(C)} \ \sqrt{\frac{3}{2}} \qquad \text{(D)} \ \frac{2}{\sqrt{3}} \qquad \text{(E)} \ 2$
2008 ITAMO, 2
A square $ (n \minus{} 1) \times (n \minus{} 1)$ is divided into $ (n \minus{} 1)^2$ unit squares in the usual manner. Each of the $ n^2$ vertices of these squares is to be coloured red or blue. Find the number of different colourings such that each unit square has exactly two red vertices. (Two colouring schemse are regarded as different if at least one vertex is coloured differently in the two schemes.)
1957 AMC 12/AHSME, 18
Circle $ O$ has diameters $ AB$ and $ CD$ perpendicular to each other. $ AM$ is any chord intersecting $ CD$ at $ P$. Then $ AP\cdot AM$ is equal to:
[asy]defaultpen(linewidth(.8pt));
unitsize(2cm);
pair O = origin;
pair A = (-1,0);
pair B = (1,0);
pair C = (0,1);
pair D = (0,-1);
pair M = dir(45);
pair P = intersectionpoint(O--C,A--M);
draw(Circle(O,1));
draw(A--B);
draw(C--D);
draw(A--M);
label("$A$",A,W);
label("$B$",B,E);
label("$C$",C,N);
label("$D$",D,S);
label("$M$",M,NE);
label("$O$",O,NE);
label("$P$",P,NW);[/asy]$ \textbf{(A)}\ AO\cdot OB \qquad \textbf{(B)}\ AO\cdot AB\qquad \textbf{(C)}\ CP\cdot CD \qquad \textbf{(D)}\ CP\cdot PD\qquad$
$ \textbf{(E)}\ CO\cdot OP$
2013 AMC 10, 18
Let points $ A = (0,0) , \ B = (1,2), \ C = (3,3), $ and $ D = (4,0) $. Quadrilateral $ ABCD $ is cut into equal area pieces by a line passing through $ A $. This line intersects $ \overline{CD} $ at point $ \left (\frac{p}{q}, \frac{r}{s} \right ) $, where these fractions are in lowest terms. What is $ p + q + r + s $?
$ \textbf{(A)} \ 54 \qquad \textbf{(B)} \ 58 \qquad \textbf{(C)} \ 62 \qquad \textbf{(D)} \ 70 \qquad \textbf{(E)} \ 75 $
2011 AMC 12/AHSME, 21
Let $f_1(x)=\sqrt{1-x}$, and for integers $n \ge 2$, let $f_n(x)=f_{n-1}(\sqrt{n^2-x})$. If $N$ is the largest value of $n$ for which the domain of $f_n$ is nonempty, the domain of $f_N$ is ${c}$. What is $N+c$?
$ \textbf{(A)}\ -226 \qquad
\textbf{(B)}\ -144 \qquad
\textbf{(C)}\ -20 \qquad
\textbf{(D)}\ 20 \qquad
\textbf{(E)}\ 144$
2020 CHMMC Winter (2020-21), 5
Suppose that a professor has $n \ge 4$ students. Let $P$ denote the set of all ordered pairs $(n, k)$ such that the number of ways for the professor to choose one pair of students equals the number of ways for the professor to choose $k > 1$ pairs of students. For each such ordered pair $(n, k) \in P$, consider the sum $n+k=s$. Find the sum of all $s$ over all ordered pairs $(n, k)$ in $P$.
[i]If the same value of $s$ appears in multiple distinct elements $(n, k)$ in $P$, count this value multiple times.[/i]
2011 Iran Team Selection Test, 8
Let $p$ be a prime and $k$ a positive integer such that $k \le p$. We know that $f(x)$ is a polynomial in $\mathbb Z[x]$ such that for all $x \in \mathbb{Z}$ we have $p^k | f(x)$.
[b](a)[/b] Prove that there exist polynomials $A_0(x),\ldots,A_k(x)$ all in $\mathbb Z[x]$ such that
\[ f(x)=\sum_{i=0}^{k} (x^p-x)^ip^{k-i}A_i(x),\]
[b](b)[/b] Find a counter example for each prime $p$ and each $k > p$.
2021 Korea - Final Round, P3
Let $P$ be a set of people. For two people $A$ and $B$, if $A$ knows $B$, $B$ also knows $A$. Each person in $P$ knows $2$ or less people in the set. $S$, a subset of $P$ with $k$ people, is called [i][b]k-independent set[/b][/i] of $P$ if any two people in $S$ don’t know each other. $X_1, X_2, …, X_{4041}$ are [i][b]2021-independent set[/b][/i]s of $P$ (not necessarily distinct). Show that there exists a [i][b]2021-independent set[/b][/i] of $P$, $\{v_1, v_2, …, v_{2021}\}$, which satisfies the following condition:
[center]
For some integer $1 \le i_1 < i_2 < \cdots < i_{2021} \leq 4041$, $v_1 \in X_{i_1}, v_2 \in X_{i_2}, \ldots, v_{2021} \in X_{i_{2021}}$
[/center]
[hide=Graph Wording]
Thanks to Evan Chen, here's a graph wording of the problem :)
Let $G$ be a finite simple graph with maximum degree at most $2$. Let $X_1, X_2, \ldots, X_{4041}$ be independent sets of size $2021$ [i](not necessarily distinct)[/i]. Prove that there exists another independent set $\{v_1, v_2, \ldots, v_{2021}\}$ of size $2021$ and indices $1 \le t_1 < t_2 < \cdots < t_{2021} \le 4041$ such that $v_i \in X_{t_i}$ for all $i$.
[/hide]
2016 Israel National Olympiad, 7
Find all functions $f:\mathbb{Z}\rightarrow\mathbb{C}$ such that $f(x(2y+1))=f(x(y+1))+f(x)f(y)$ holds for any two integers $x,y$.
1978 IMO Shortlist, 1
The set $M = \{1, 2, . . . , 2n\}$ is partitioned into $k$ nonintersecting subsets $M_1,M_2, \dots, M_k,$ where $n \ge k^3 + k.$ Prove that there exist even numbers $2j_1, 2j_2, \dots, 2j_{k+1}$ in $M$ that are in one and the same subset $M_i$ $(1 \le i \le k)$ such that the numbers $2j_1 - 1, 2j_2 - 1, \dots, 2j_{k+1} - 1$ are also in one and the same subset $M_j (1 \le j \le k).$
2020 LMT Fall, A8 B12
Find the sum of all positive integers $a$ such that there exists an integer $n$ that satisfies the equation:
\[a! \cdot 2^{\lfloor \sqrt{a} \rfloor}=n!.\]
[i]Proposed by Ivy Zheng[/i]