This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2020 Dutch Mathematical Olympiad, 2

For a given value $t$, we consider number sequences $a_1, a_2, a_3,...$ such that $a_{n+1} =\frac{a_n + t}{a_n + 1}$ for all $n \ge 1$. (a) Suppose that $t = 2$. Determine all starting values $a_1 > 0$ such that $\frac43 \le a_n \le \frac32$ holds for all $n \ge 2$. (b) Suppose that $t = -3$. Investigate whether $a_{2020} = a_1$ for all starting values $a_1$ different from $-1$ and $1$.

2023 Saint Petersburg Mathematical Olympiad, 6

There are several gentlemen in the meeting of the Diogenes Club, some of which are friends with each other (friendship is mutual). Let's name a participant unsociable if he has exactly one friend among those present at the meeting. By the club rules, the only friend of any unsociable member can leave the meeting (gentlemen leave the meeting one at a time). The purpose of the meeting is to achieve a situation in which that there are no friends left among the participants. Prove that if the goal is achievable, then the number of participants remaining at the meeting does not depend on who left and in what order.

1990 AMC 12/AHSME, 4

Let $ABCD$ be a parallelogram with $\angle ABC=120^\circ$, $AB=16$ and $BC=10$. Extend $\overline{CD}$ through $D$ to $E$ so that $DE=4$. If $\overline{BE}$ intersects $\overline{AD}$ at $F$, then $FD$ is closest to $\textbf{(A) }1\qquad \textbf{(B) }2\qquad \textbf{(C) }3\qquad \textbf{(D) }4\qquad \textbf{(E) }5$ [asy] size(200); defaultpen(linewidth(0.8)); pair A=origin,B=(16,0),C=(26,10*sqrt(3)),D=(10,10*sqrt(3)),E=(0,10*sqrt(3)); draw(A--B--C--E--B--A--D); label("$A$",A,S); label("$B$",B,S); label("$C$",C,N); label("$D$",D,N); label("$E$",E,N); label("$F$",extension(A,D,B,E),W); label("$4$",(D+E)/2,N); label("$16$",(8,0),S); label("$10$",(B+C)/2,SE); [/asy]

2005 Portugal MO, 3

On a board with $a$ rows and $b$ columns, each square has a switch and an unlit light bulb. By pressing the switch of a house, the lamp in that house changes state, along with the lamps in the same row and those in the same column (those that are on go out and the that are off light up). For what values of $a$ and $b$ is it possible to have just one lamp on, by pressing a series of switches?

PEN A Problems, 75

Find all triples $(a,b,c)$ of positive integers such that $2^{c}-1$ divides $2^{a}+2^{b}+1$.

2024 Bosnia and Herzegovina Junior BMO TST, 2.

Determine all $x$, $y$, $k$ and $n$ positive integers such that: $10^x$ + $10^y$ + $n!$ = $2024^k$

1998 Romania National Olympiad, 3

Let $ABCD$ be a tetrahedron and $A'$, $B'$, $C'$ be arbitrary points on the edges $[DA]$, $[DB]$, $[DC]$, respectively. One considers the points $P_c \in [AB]$, $P_a \in [BC]$, $P_b \in [AC]$ and $P'_c \in [A'B']$, $P'_a \in [B'C']$, $P'_b \in [A'C']$ such that $$\frac{P_cA}{P_cB}= \frac{P'_cA'}{P'_cB'}=\frac{AA'}{BB'}\,\,\, , \,\,\,\frac{P_aB}{P_aC}= \frac{P'_aB'}{P'_aC'}=\frac{BB'}{CC'}\,\,\, , \,\,\, \frac{P_bC}{P_bA}= \frac{P'_bC'}{P'_bA'}=\frac{CC'}{AA'}$$ Prove that: a) the lines $AP_a,$ $BP_b$, $CP_c$ have a common point $P$ and the lines $A'P'_a$, $B'P'_b$ , $C'P'_c$ have a common point $P'$ b) $\frac{PC}{PP_c}=\frac{P'C'}{P'P'_c} $ c) if $A', B', C'$ are variable points on the edges $[DA]$, $[DB]$, $[DC]$, then the line $PP'$ is always parallel to a fixed line.

2014 Postal Coaching, 2

Let $A=\{1,2,3,\ldots,40\}$. Find the least positive integer $k$ for which it is possible to partition $A$ into $k$ disjoint subsets with the property that if $a,b,c$ (not necessarily distinct) are in the same subset, then $a\ne b+c$.

2022 Moldova Team Selection Test, 9

Let $n$ be a positive integer. A grid of dimensions $n \times n$ is divided in $n^2$ $1 \times 1$ squares. Every segment of length $1$ (side of a square) from this grid is coloured in blue or red. The number of red segments is not greater than $n^2$. Find all positive integers $n$, for which the grid always will cointain at least one $1 \times 1$ square which has at least three blue sides.

2016 China Team Selection Test, 5

Let $S$ be a finite set of points on a plane, where no three points are collinear, and the convex hull of $S$, $\Omega$, is a $2016-$gon $A_1A_2\ldots A_{2016}$. Every point on $S$ is labelled one of the four numbers $\pm 1,\pm 2$, such that for $i=1,2,\ldots , 1008,$ the numbers labelled on points $A_i$ and $A_{i+1008}$ are the negative of each other. Draw triangles whose vertices are in $S$, such that any two triangles do not have any common interior points, and the union of these triangles is $\Omega$. Prove that there must exist a triangle, where the numbers labelled on some two of its vertices are the negative of each other.

2001 China Western Mathematical Olympiad, 1

The sequence $ \{x_n\}$ satisfies $ x_1 \equal{} \frac {1}{2}, x_{n \plus{} 1} \equal{} x_n \plus{} \frac {x_n^2}{n^2}$. Prove that $ x_{2001} < 1001$.

1999 Israel Grosman Mathematical Olympiad, 1

For any $16$ positive integers $n,a_1,a_2,...,a_{15}$ we define $T(n,a_1,a_2,...,a_{15}) = (a_1^n+a_2^n+ ...+a_{15}^n)a_1a_2...a_{15}$. Find the smallest $n$ such that $T(n,a_1,a_2,...,a_{15})$ is divisible by $15$ for any choice of $a_1,a_2,...,a_{15}$.

1994 AMC 12/AHSME, 8

In the polygon shown, each side is perpendicular to its adjacent sides, and all 28 of the sides are congruent. The perimeter of the polygon is $56$. The area of the region bounded by the polygon is [asy] draw((0,0)--(1,0)--(1,-1)--(2,-1)--(2,-2)--(3,-2)--(3,-3)--(4,-3)--(4,-2)--(5,-2)--(5,-1)--(6,-1)--(6,0)--(7,0)--(7,1)--(6,1)--(6,2)--(5,2)--(5,3)--(4,3)--(4,4)--(3,4)--(3,3)--(2,3)--(2,2)--(1,2)--(1,1)--(0,1)--cycle); [/asy] $ \textbf{(A)}\ 84 \qquad\textbf{(B)}\ 96 \qquad\textbf{(C)}\ 100 \qquad\textbf{(D)}\ 112 \qquad\textbf{(E)}\ 196 $

2014 National Olympiad First Round, 25

Tags: geometry
The circle $C_{1}$ with radius $6$ and the circle $C_{2}$ with radius $8$ are externally tangent to each other at $A$. The circle $C_3$ which is externally tangent to $C_{1}$ and $C_{2}$ has a radius with length $21$. The common tangent of $C_{1}$ and $C_{2}$ which passes through $A$ meets $C_{3}$ at $B$ and $C$. What is $|BC|$? $ \textbf{(A)}\ 24 \qquad\textbf{(B)}\ 25 \qquad\textbf{(C)}\ 14\sqrt{3} \qquad\textbf{(D)}\ 24\sqrt{3} \qquad\textbf{(E)}\ 25\sqrt{3} $

2003 IMO, 2

Determine all pairs of positive integers $(a,b)$ such that \[ \dfrac{a^2}{2ab^2-b^3+1} \] is a positive integer.

2014 Greece Team Selection Test, 1

Let $(x_{n}) \ n\geq 1$ be a sequence of real numbers with $x_{1}=1$ satisfying $2x_{n+1}=3x_{n}+\sqrt{5x_{n}^{2}-4}$ a) Prove that the sequence consists only of natural numbers. b) Check if there are terms of the sequence divisible by $2011$.

2007 South africa National Olympiad, 1

Tags: algebra
Determine whether $ \frac{1}{\sqrt{2}} \minus{} \frac{1}{\sqrt{6}}$ is less than or greater than $ \frac{3}{10}$.

2022 Kyiv City MO Round 2, Problem 1

Positive reals $x, y, z$ satisfy $$\frac{xy+1}{x+1} = \frac{yz+1}{y+1} = \frac{zx+1}{z+1}$$ Do they all have to be equal? [i](Proposed by Oleksii Masalitin)[/i]

1994 Chile National Olympiad, 7

Let $ABCD$ be a rectangle of length $m$ and width $n$, with $m, n$ positive integers. Consider a ray of light that starts from $A$, reflects with an angle of $45^o$ on an opposite side and continues reflecting away at the same angle. $\bullet$ For any pair $(m,n)$, show that the ray meets a vertex at some point. $\bullet$ Suppose $m$ and $n$ are coprime. Determine the number of reflections made by the ray of light before encountering a vertex for the first time.

Novosibirsk Oral Geo Oly VII, 2020.6

Angle bisectors $AA', BB'$and $CC'$ are drawn in triangle $ABC$ with angle $\angle B= 120^o$. Find $\angle A'B'C'$.

2019 Iran MO (2nd Round), 4

Consider a circle with diameter $AB$ and let $C,D$ be points on its circumcircle such that $C,D$ are not in the same side of $AB$.Consider the parallel line to $AC$ passing from $D$ and let it intersect $AB$ at $E$.Similarly consider the paralell line to $AD$ passing from $C$ and let it intersect $AB$ at $F$.The perpendicular line to $AB$ at $E$ intersects $BC$ at $X$ and the perpendicular line to $AB$ at $F$ intersects $DB$ at $Y$.Prove that the permiter of triangle $AXY$ is twice $CD$. [b]Remark:[/b]This problem is proved to be wrong due to a typo in the exam papers you can find the correct version [url=https://artofproblemsolving.com/community/c6h1832731_geometry__iran_mo_2019]here[/url].

2005 Spain Mathematical Olympiad, 1

Prove that for every positive integer $n$, the decimal expression of $\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}$ is periodic .

1988 AMC 8, 24

Tags:
[asy] unitsize(15); for (int a=0; a<6; ++a) { draw(2*dir(60a)--2*dir(60a+60),linewidth(1)); } draw((1,1.7320508075688772935274463415059)--(1,3.7320508075688772935274463415059)--(-1,3.7320508075688772935274463415059)--(-1,1.7320508075688772935274463415059)--cycle,linewidth(1)); fill((.4,1.7320508075688772935274463415059)--(0,3.35)--(-.4,1.7320508075688772935274463415059)--cycle,black); label("1.",(0,-2),S); draw(arc((1,1.7320508075688772935274463415059),1,90,300,CW)); draw((1.5,0.86602540378443864676372317075294)--(1.75,1.7)); draw((1.5,0.86602540378443864676372317075294)--(2.2,1)); draw((7,0)--(6,1.7320508075688772935274463415059)--(4,1.7320508075688772935274463415059)--(3,0)--(4,-1.7320508075688772935274463415059)--(6,-1.7320508075688772935274463415059)--cycle,linewidth(1)); draw((7,0)--(6,1.7320508075688772935274463415059)--(7.7320508075688772935274463415059,2.7320508075688772935274463415059)--(8.7320508075688772935274463415059,1)--cycle,linewidth(1)); label("2.",(5,-2),S); draw(arc((7,0),1,30,240,CW)); draw((6.5,-0.86602540378443864676372317075294)--(7.1,-.7)); draw((6.5,-0.86602540378443864676372317075294)--(6.8,-1.5)); draw((14,0)--(13,1.7320508075688772935274463415059)--(11,1.7320508075688772935274463415059)--(10,0)--(11,-1.7320508075688772935274463415059)--(13,-1.7320508075688772935274463415059)--cycle,linewidth(1)); draw((14,0)--(13,-1.7320508075688772935274463415059)--(14.7320508075688772935274463415059,-2.7320508075688772935274463415059)--(15.7320508075688772935274463415059,-1)--cycle,linewidth(1)); label("3.",(12,-2.5),S); draw((21,0)--(20,1.7320508075688772935274463415059)--(18,1.7320508075688772935274463415059)--(17,0)--(18,-1.7320508075688772935274463415059)--(20,-1.7320508075688772935274463415059)--cycle,linewidth(1)); draw((18,-1.7320508075688772935274463415059)--(20,-1.7320508075688772935274463415059)--(20,-3.7320508075688772935274463415059)--(18,-3.7320508075688772935274463415059)--cycle,linewidth(1)); label("4.",(19,-4),S);[/asy] The square in the first diagram "rolls" clockwise around the fixed regular hexagon until it reaches the bottom. In which position will the solid triangle be in diagram $4$? [asy] unitsize(12); label("(A)",(0,0),W); fill((1,-1)--(1,1)--(5,0)--cycle,black); label("(B)",(6,0),E); fill((9,-2)--(11,-2)--(10,1)--cycle,black); label("(C)",(14,0),E); fill((17,1)--(19,1)--(18,-1.8)--cycle,black); label("(D)",(22,0),E); fill((25,-1)--(27,-2)--(28,1)--cycle,black); label("(E)",(31,0),E); fill((33,0)--(37,1)--(37,-1)--cycle,black);[/asy]

2020 Philippine MO, 1

A [i]T-tetromino[/i] is formed by adjoining three unit squares to form a $1 \times 3$ rectangle, and adjoining on top of the middle square a fourth unit square. Determine the least number of unit squares that must be removed from a $202 \times 202$ grid so that it can be tiled using T-tetrominoes.

1976 Euclid, 10

Tags: function , equation
Source: 1976 Euclid Part A Problem 10 ----- If $f$, $g$, $h$, and $k$ are functions and $a$ and $b$ are numbers such that $f(x)=(x-1)g(x)+3=(x+1)h(x)+1=(x^2-1)k(x)+ax+b$ for all $x$, then $(a,b)$ equals $\textbf{(A) } (-2,1) \qquad \textbf{(B) } (-1,2) \qquad \textbf{(C) } (1,1) \qquad \textbf{(D) } (1,2) \qquad \textbf{(E) } (2,1)$