This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2017 Mathematical Talent Reward Programme, SAQ: P 1

A monic polynomial is a polynomial whose highest degree coefficient is 1. Let $P(x)$ and $Q(x)$ be monic polynomial with real coefficients and $degP(x)=degQ(x)=10$. Prove that if the equation $P(x)=Q(x)$ has no real solutions then $P(x+1)=Q(x-1)$ has a real solution

2023 Middle European Mathematical Olympiad, 5

Tags: geometry
We are given a convex quadrilateral $ABCD$ whose angles are not right. Assume there are points $P, Q, R, S$ on its sides $AB, BC, CD, DA$, respectively, such that $PS \parallel BD$, $SQ \perp BC$, $PR \perp CD$. Furthermore, assume that the lines $PR, SQ$, and $AC$ are concurrent. Prove thatthe points $P, Q, R, S$ are concyclic.

2012 CHMMC Spring, 4

Tags: algebra
Let $P(x)$ be a monic polynomial of degree $3$. Suppose that $P(x)$ has remainder $R(x)$ when it is divided by $(x - 1)(x - 4)$ and $2R(x)$ when it is divided by $(x - 2)(x - 3)$. Given that $P(0) = 5$, find $P(5)$.

2021 Estonia Team Selection Test, 2

Find all polynomials $P(x)$ with integral coefficients whose values at points $x = 1, 2, . . . , 2021$ are numbers $1, 2, . . . , 2021$ in some order.

2009 Indonesia TST, 4

Sixteen people for groups of four people such that each two groups have at most two members in common. Prove that there exists a set of six people in which every group is not properly contained in it.

2011 ELMO Shortlist, 2

Let $p\ge5$ be a prime. Show that \[\sum_{k=0}^{(p-1)/2}\binom{p}{k}3^k\equiv 2^p - 1\pmod{p^2}.\] [i]Victor Wang.[/i]

1977 IMO Longlists, 37

Let $A_1,A_2,\ldots ,A_{n+1}$ be positive integers such that $(A_i,A_{n+1})=1$ for every $i=1,2,\ldots ,n$. Show that the equation \[x_1^{A_1}+x_2^{A_2}+\ldots + x_n^{A_n}=x_{n+1}^{A_{n+1} }\] has an infinite set of solutions $(x_1,x_2,\ldots , x_{n+1})$ in positive integers.

1989 Greece National Olympiad, 4

A trapezoid with bases $a,b$ and altitude $h$ is circumscribed around a circl.. Prove that $h^2\le ab$.

2024 AMC 10, 2

Tags:
A model used to estimate the time it will take to hike to the top of the mountain on a trail is of the form $T = aL + bG,$ where $a$ and $b$ are constants, $T$ is the time in minutes, $L$ is the length of the trail in miles, and $G$ is the altitude gain in feet. The model estimates that it will take $69$ minutes to hike to the top if a trail is $1.5$ miles long and ascends $800$ feet, as well as if a trail is $1.2$ miles long and ascends $1100$ feet. How many minutes does the model estimate it will take to hike to the top if the trail is $4.2$ miles long and ascends $4000$ feet? $\textbf{(A) } 240 \qquad \textbf{(B) } 246 \qquad \textbf{(C) } 252 \qquad \textbf{(D) } 258 \qquad \textbf{(E) } 264$

2023 Princeton University Math Competition, A8

Tags: geometry
Let $\vartriangle ABC$ be a triangle with $AB = 4$ and $AC = \frac72$ . Let $\omega$ denote the $A$-excircle of $\vartriangle ABC$. Let $\omega$ touch lines $AB$, $AC$ at the points $D$, $E$, respectively. Let $\Omega$ denote the circumcircle of $\vartriangle ADE$. Consider the line $\ell$ parallel to $BC$ such that $\ell$ is tangent to $\omega$ at a point $F$ and such that $\ell$ does not intersect $\Omega$. Let $\ell$ intersect lines $AB$, $AC$ at the points $X$, $Y$ , respectively, with $XY = 18$ and $AX = 16$. Let the perpendicular bisector of $XY$ meet the circumcircle of $\vartriangle AXY$ at $P$, $Q$, where the distance from $P$ to $F$ is smaller than the distance from $Q$ to$ F$. Let ray $\overrightarrow {PF}$ meet $\Omega$ for the first time at the point $Z$. If $PZ^2 = \frac{m}{n}$ for relatively prime positive integers $m$, $n$, find $m + n$.

1981 IMO Shortlist, 17

Three circles of equal radius have a common point $O$ and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incenter and the circumcenter of the triangle are collinear with the point $O$.

2011 Morocco National Olympiad, 4

The diagonals of a trapezoid $ ABCD $ whose bases are $ [AB] $ and $ [CD] $ intersect at $P.$ Prove that \[S_{PAB} + S_{PCD} > S_{PBC} + S_{PDA},\] Where $S_{XYZ} $ denotes the area of $\triangle XYZ $.

2018 Romanian Master of Mathematics Shortlist, N1

Determine all polynomials $f$ with integer coefficients such that $f(p)$ is a divisor of $2^p-2$ for every odd prime $p$. [I]Proposed by Italy[/i]

2024 Taiwan TST Round 2, 3

Let $\mathbb{N}$ be the set of all positive integers. Find all functions $f\colon \mathbb{N}\to \mathbb{N}$ such that $mf(m)+(f(f(m))+n)^2$ divides $4m^4+n^2f(f(n))^2$ for all positive integers $m$ and $n$.

1999 Hong kong National Olympiad, 3

Students have taken a test paper in each of $n \ge 3$ subjects. It is known that in any subject exactly three students got the best score, and for any two subjects exactly one student got the best scores in both subjects. Find the smallest $n$ for which the above conditions imply that exactly one student got the best score in each of the $n$ subjects.

2006 ISI B.Stat Entrance Exam, 9

Find a four digit number $M$ such that the number $N=4\times M$ has the following properties. (a) $N$ is also a four digit number (b) $N$ has the same digits as in $M$ but in reverse order.

2018 Azerbaijan JBMO TST, 4

An $n\times n$ square table is divided into $n^2$ unit cells. Some unit segments of the obtained grid (i.e. the side of any unit cell) is colored black so that any unit cell of the given square has exactly one black side. Find [b]a)[/b] the smallest [b]b)[/b] the greatest possible number of black unit segments.

2005 India IMO Training Camp, 2

Prove that one can find a $n_{0} \in \mathbb{N}$ such that $\forall m \geq n_{0}$, there exist three positive integers $a$, $b$ , $c$ such that (i) $m^3 < a < b < c < (m+1)^3$; (ii) $abc$ is the cube of an integer.

Russian TST 2018, P3

Find all pairs $(p,q)$ of prime numbers which $p>q$ and $$\frac{(p+q)^{p+q}(p-q)^{p-q}-1}{(p+q)^{p-q}(p-q)^{p+q}-1}$$ is an integer.

2022 Cyprus JBMO TST, 1

Determine all real numbers $x\in\mathbb{R}$ for which \[ \left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x}{3} \right\rfloor=x-2022. \] The notation $\lfloor z \rfloor$, for $z\in\mathbb{R}$, denotes the largest integer which is less than or equal to $z$. For example: \[\lfloor 3.98 \rfloor =3 \quad \text{and} \quad \lfloor 0.14 \rfloor =0.\]

2010 Turkey Junior National Olympiad, 2

Determine the number of positive integers $n$ for which $(n+15)(n+2010)$ is a perfect square.

1976 Miklós Schweitzer, 2

Let $ G$ be an infinite graph such that for any countably infinite vertex set $ A$ there is a vertex $ p$, not in $A$, joined to infinitely many elements of $ A$. Show that $ G$ has a countably infinite vertex set $ A$ such that $ G$ contains uncountably infinitely many vertices $ p$ joined to infinitely many elements of $ A$. [i]P. Erdos, A. Hajnal[/i]

2013 India PRMO, 17

Tags: radius , circles , geometry
Let $S$ be a circle with centre $O$. A chord $AB$, not a diameter, divides $S$ into two regions $R_1$ and $R_2$ such that $O$ belongs to $R_2$. Let $S_1$ be a circle with centre in $R_1$, touching $AB$ at $X$ and $S$ internally. Let $S_2$ be a circle with centre in $R_2$, touching $AB$ at $Y$, the circle $S$ internally and passing through the centre of $S$. The point $X$ lies on the diameter passing through the centre of $S_2$ and $\angle YXO=30^o$. If the radius of $S_2$ is $100 $ then what is the radius of $S_1$?

2020 LIMIT Category 1, 11

Tags: limit , geometry
In $\triangle ABC$, $\angle A=30^{\circ}$, $BC=13$. Given $2$ circles $\gamma_1, \gamma_2$ ith radius $r_1,r_2$ contain $A$ and touch $BC$ at $B$ and $C$ respectively. Find $r_1r_2$.

1985 IMO Longlists, 31

Let $E_1, E_2$, and $E_3$ be three mutually intersecting ellipses, all in the same plane. Their foci are respectively $F_2, F_3; F_3, F_1$; and $F_1, F_2$. The three foci are not on a straight line. Prove that the common chords of each pair of ellipses are concurrent.