This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2023 Tuymaada Olympiad, 4

Two players play a game. They have $n > 2$ piles containing $n^{10}+1$ stones each. A move consists of removing all the piles but one and dividing the remaining pile into $n$ nonempty piles. The player that cannot move loses. Who has a winning strategy, the player that moves first or his adversary?

1953 AMC 12/AHSME, 39

Tags: logarithm
The product, $ \log_a b \cdot \log_b a$ is equal to: $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ a \qquad\textbf{(C)}\ b \qquad\textbf{(D)}\ ab \qquad\textbf{(E)}\ \text{none of these}$

2012 Tournament of Towns, 1

It is possible to place an even number of pears in a row such that the masses of any two neighbouring pears differ by at most $1$ gram. Prove that it is then possible to put the pears two in a bag and place the bags in a row such that the masses of any two neighbouring bags differ by at most $1$ gram.

2016 Harvard-MIT Mathematics Tournament, 8

Tags:
In cyclic quadrilateral $ABCD$ with $AB = AD = 49$ and $AC = 73$, let $I$ and $J$ denote the incenters of triangles $ABD$ and $CBD$. If diagonal $\overline{BD}$ bisects $\overline{IJ}$, find the length of $IJ$.

2018 Iran Team Selection Test, 2

Mojtaba and Hooman are playing a game. Initially Mojtaba draws $2018$ vectors with zero sum. Then in each turn, starting with Mojtaba, the player takes a vector and puts it on the plane. After the first move, the players must put their vector next to the previous vector (the beginning of the vector must lie on the end of the previous vector). At last, there will be a closed polygon. If this polygon is not self-intersecting, Mojtaba wins. Otherwise Hooman. Who has the winning strategy? [i]Proposed by Mahyar Sefidgaran, Jafar Namdar [/i]

2001 Junior Balkan Team Selection Tests - Moldova, 5

Determine if there is a non-natural natural number $n$ with the property that $\sqrt{n + 1} + \sqrt{n - 1}$ is rational.

LMT Speed Rounds, 2016.19

Tags:
Find the shortest distance between the graphs of $y=x^2+5$ and $x=y^2+5$. [i]Proposed by Nathan Ramesh

2015 Federal Competition For Advanced Students, P2, 2

We are given a triangle $ABC$. Let $M$ be the mid-point of its side $AB$. Let $P$ be an interior point of the triangle. We let $Q$ denote the point symmetric to $P$ with respect to $M$. Furthermore, let $D$ and $E$ be the common points of $AP$ and $BP$ with sides $BC$ and $AC$, respectively. Prove that points $A$, $B$, $D$, and $E$ lie on a common circle if and only if $\angle ACP = \angle QCB$ holds. (Karl Czakler)

2001 Chile National Olympiad, 2

Prove that the only way to cover a square of side $1$ with a finite number of circles that do not overlap, it is with only one circle of radius greater than or equal to $\frac{1}{\sqrt2}$. Circles can occupy part of the outside of the square and be of different radii.

2019 China Western Mathematical Olympiad, 8

Tags: combinatorics , set
We call a set $S$ a [i]good[/i] set if $S=\{x,2x,3x\}(x\neq 0).$ For a given integer $n(n\geq 3),$ determine the largest possible number of the [i]good[/i] subsets of a set containing $n$ positive integers.

2023 JBMO Shortlist, G1

Tags: geometry
Let $ABC$ be a triangle with circumcentre $O$ and circumcircle $\Omega$. $\Gamma$ is the circle passing through $O,B$ and tangent to $AB$ at $B$. Let $\Gamma$ intersect $\Omega$ a second time at $P \neq B$. The circle passing through $P,C$ and tangent to $AC$ at $C$ intersects with $\Gamma$ at $M$. Prove that $|MP|=|MC|$.

2004 Turkey MO (2nd round), 3

[b](a)[/b] Determine if exist an integer $n$ such that $n^2 -k$ has exactly $10$ positive divisors for each $k = 1, 2, 3.$ [b](b) [/b]Show that the number of positive divisors of $n^2 -4$ is not $10$ for any integer $n.$

2024 Ukraine National Mathematical Olympiad, Problem 3

Altitudes $AH_A, BH_B, CH_C$ of triangle $ABC$ intersect at $H$, and let $M$ be the midpoint of the side $AC$. The bisector $BL$ of $\triangle ABC$ intersects $H_AH_C$ at point $K$. The line through $L$ parallel to $HM$ intersects $BH_B$ in point $T$. Prove that $TK = TL$. [i]Proposed by Anton Trygub[/i]

2019 Taiwan TST Round 1, 2

Alice and Bob play a game on a Cartesian Coordinate Plane. At the beginning, Alice chooses a lattice point $ \left(x_{0}, y_{0}\right) $ and places a pudding. Then they plays by turns (B goes first) according to the rules a. If $ A $ places a pudding on $ \left(x,y\right) $ in the last round, then $ B $ can only place a pudding on one of $ \left(x+2, y+1\right), \left(x+2, y-1\right), \left(x-2, y+1\right), \left(x-2, y-1\right) $ b. If $ B $ places a pudding on $ \left(x,y\right) $ in the last round, then $ A $ can only place a pudding on one of $ \left(x+1, y+2\right), \left(x+1, y-2\right), \left(x-1, y+2\right), \left(x-1, y-2\right) $ Furthermore, if there is already a pudding on $ \left(a,b\right) $, then no one can place a pudding on $ \left(c,d\right) $ where $ c \equiv a \pmod{n}, d \equiv b \pmod{n} $. 1. Who has a winning strategy when $ n = 2018 $ 1. Who has a winning strategy when $ n = 2019 $

2018 Saint Petersburg Mathematical Olympiad, 7

The checker moves from the lower left corner of the board $100 \times 100$ to the right top corner, moving at each step one cell to the right or one cell up. Let $a$ be the number of paths in which exactly $70$ steps the checker take under the diagonal going from the lower left corner to the upper right corner, and $b$ is the number of paths in which such steps are exactly $110$. What is more: $a$ or $b$?

2009 Estonia Team Selection Test, 6

For any positive integer $n$, let $c(n)$ be the largest divisor of $n$ not greater than $\sqrt{n}$ and let $s(n)$ be the least integer $x$ such that $n < x$ and the product $nx$ is divisible by an integer $y$ where $n < y < x$. Prove that, for every $n$, $s(n) = (c(n) + 1) \cdot \left( \frac{n}{c(n)}+1\right)$

2019 Iran Team Selection Test, 5

A sub-graph of a complete graph with $n$ vertices is chosen such that the number of its edges is a multiple of $3$ and degree of each vertex is an even number. Prove that we can assign a weight to each triangle of the graph such that for each edge of the chosen sub-graph, the sum of the weight of the triangles that contain that edge equals one, and for each edge that is not in the sub-graph, this sum equals zero. [i]Proposed by Morteza Saghafian[/i]

2011 Dutch Mathematical Olympiad, 3

In a tournament among six teams, every team plays against each other team exactly once. When a team wins, it receives $3$ points and the losing team receives $0$ points. If the game is a draw, the two teams receive $1$ point each. Can the final scores of the six teams be six consecutive numbers $a,a +1,...,a + 5$? If so, determine all values of $a$ for which this is possible.

2007 CHKMO, 1

Let M be a subst of {1,2,...,2006} with the following property: For any three elements x,y and z (x<y<z) of M, x+y does not divide z. Determine the largest possible size of M. Justify your claim.

2016 Junior Balkan MO, 2

Tags: inequalities
Let $a,b,c $be positive real numbers.Prove that $\frac{8}{(a+b)^2 + 4abc} + \frac{8}{(b+c)^2 + 4abc} + \frac{8}{(a+c)^2 + 4abc} + a^2 + b^2 + c ^2 \ge \frac{8}{a+3} + \frac{8}{b+3} + \frac{8}{c+3}$.

2018 Czech-Polish-Slovak Match, 3

There are $2018$ players sitting around a round table. At the beginning of the game we arbitrarily deal all the cards from a deck of $K$ cards to the players (some players may receive no cards). In each turn we choose a player who draws one card from each of the two neighbors. It is only allowed to choose a player whose each neighbor holds a nonzero number of cards. The game terminates when there is no such player. Determine the largest possible value of $K$ such that, no matter how we deal the cards and how we choose the players, the game always terminates after a finite number of turns. [i]Proposed by Peter Novotný, Slovakia[/i]

2022 Irish Math Olympiad, 9

9. Let [i]k[/i] be a positive integer and let $x_0, x_1, x_2, \cdots$ be an infinite sequence defined by the relationship $$x_0 = 0$$ $$x_1 = 1$$ $$x_{n+1} = kx_n +x_{n-1}$$ For all [i]n[/i] $\ge$ 1 (a) For the special case [i]k[/i] = 1, prove that $x_{n-1}x_{n+1}$ is never a perfect square for [i]n[/i] $\ge$ 2 (b) For the general case of integers [i]k[/i] $\ge$ 1, prove that $x_{n-1}x_{n+1}$ is never a perfect square for [i]n[/i] $\ge$ 2

2018 Swedish Mathematical Competition, 5

In a triangle $ABC$, two lines are drawn that together trisect the angle at $A$. These intersect the side $BC$ at points $P$ and $Q$ so that $P$ is closer to $B$ and $Q$ is closer to $C$. Determine the smallest constant $k$ such that $| P Q | \le k (| BP | + | QC |)$, for all such triangles. Determine if there are triangles for which equality applies.

2022 Belarusian National Olympiad, 10.4

On the semicircle with diameter $AB$ and center $O$ point $D$ is marked. Points $E$ and $F$ are the midpoints of minor arcs $AD$ and $BD$ respectively. It turned out that the line connecting orthocenters of $ADF$ and $BDE$ passes through $O$ Find $\angle AOD$

2024 Iran MO (3rd Round), 2

Two intelligent people playing a game on the $1403 \times 1403$ table with $1403^2$ cells. The first one in each turn chooses a cell that didn't select before and draws a vertical line segment from the top to the bottom of the cell. The second person in each turn chooses a cell that didn't select before and draws a horizontal line segment from the left to the right of the cell. After $1403^2$ steps the game will be over. The first person gets points equal to the longest verticals line segment and analogously the second person gets point equal to the longest horizonal line segment. At the end the person who gets the more point will win the game. What will be the result of the game?