This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 Azerbaijan JBMO TST, 4

In the beginning, there are $100$ cards on the table, and each card has a positive integer written on it. An odd number is written on exactly $43$ cards. Every minute, the following operation is performed: for all possible sets of $3$ cards on the table, the product of the numbers on these three cards is calculated, all the obtained results are summed, and this sum is written on a new card and placed on the table. A day later, it turns out that there is a card on the table, the number written on this card is divisible by $2^{2018}.$ Prove that one hour after the start of the process, there was a card on the table that the number written on that card is divisible by $2^{2018}.$

1987 IMO Shortlist, 6

Show that if $a, b, c$ are the lengths of the sides of a triangle and if $2S = a + b + c$, then \[\frac{a^n}{b+c} + \frac{b^n}{c+a} +\frac{c^n}{a+b} \geq \left(\dfrac 23 \right)^{n-2}S^{n-1} \quad \forall n \in \mathbb N \] [i]Proposed by Greece.[/i]

1940 Putnam, B3

Let $p>0$ be a real constant. From any point $(a,b)$ in the cartesian plane, show that i) Three normals, real or imaginary, can be drawn to the parabola $y^2=4px$. ii) These are real and distinct if $4(2-p)^3 +27pb^2<0$. iii) Two of them coincide if $(a,b)$ lies on the curve $27py^2=4(x-2p)^3$. iv) All three coincide only if $a=2p$ and $b=0$.

1966 AMC 12/AHSME, 11

The sides of triangle $BAC$ are in the ratio $2: 3: 4$. $BD$ is the angle-bisector drawn to the shortest side $AC$, dividing it into segments $AD$ and $CD$. If the length of $AC$ is $10$, then the length of the longer segment of $AC$ is: $\text{(A)} \ 3\frac12 \qquad \text{(B)} \ 5 \qquad \text{(C)} \ 5\frac57 \qquad \text{(D)} \ 6 \qquad \text{(E)} \ 7\frac12$

1985 IMO Longlists, 66

Let $D$ be the interior of the circle $C$ and let $A \in C$. Show that the function $f : D \to \mathbb R, f(M)=\frac{|MA|}{|MM'|}$ where $M' = AM \cap C$, is strictly convex; i.e., $f(P) <\frac{f(M_1)+f(M_2)}{2}, \forall M_1,M_2 \in D, M_1 \neq M_2$ where $P$ is the midpoint of the segment $M_1M_2.$

2024 Thailand TSTST, 11

Find the maximal number of points, such that there exist a configuration of $2023$ lines on the plane, with each lines pass at least $2$ points.

Kyiv City MO Seniors Round2 2010+ geometry, 2013.11.4

Let $ H $ be the intersection point of the altitudes $ AP $ and $ CQ $ of the acute-angled triangle $ ABC $. On its median $ BM $ marked points $ E $ and $ F $ so that $ \angle APE = \angle BAC $ and $ \angle CQF = \angle BCA $, and the point $ E $ lies inside the triangle $ APB $, and the point $ F $ lies inside the triangle $ CQB $. Prove that the lines $ AE $, $ CF $ and $ BH $ intersect at one point. (Vyacheslav Yasinsky)

2022 JHMT HS, 2

Four mutually externally tangent spherical apples of radius $4$ are placed on a horizontal flat table. Then, a spherical orange of radius $3$ is placed such that it rests on all the apples. Find the distance from the center of the orange to the table.

2010 Peru Iberoamerican Team Selection Test, P1

Let $n$ be a positive integer. We know that the set $I_n = \{ 1, 2,\ldots , n\}$ has exactly $2^n$ subsets, so there are $8^n$ ordered triples $(A, B, C)$, where $A, B$, and $C$ are subsets of $I_n$. For each of these triples we consider the number $\mid A \cap B \cap C\mid$. Prove that the sum of the $8^n$ numbers considered is a multiple of $n$. Clarification: $\mid Y\mid$ denotes the number of elements in the set $Y$.

2007 Moldova National Olympiad, 11.8

The continuous function and twice differentiable function $f: \mathbb{R}\rightarrow\mathbb{R}$ satisfies $2007^{2}\cdot f(x)+f''(x)=0$. Prove that there exist two such real numbers $k$ and $l$ such that $f(x)=l\cdot\sin(2007x)+k\cdot\cos(2007x)$.

2009 Today's Calculation Of Integral, 473

For nonzero real numbers $ r,\ l$ and the positive constant number $ c$, consider the curve on the $ xy$ plane : $ y \equal{} \left\{ \begin{array}{ll} x^2 & (0\leq x\leq r)\quad \\ r^2 & (r\leq x\leq l \plus{} r)\quad \\ (x \minus{} l \minus{} 2r)^2 & (l \plus{} r\leq x\leq l \plus{} 2r)\quad \end{array} \right.$ Denote $ V$ the volume of the solid by revolvering the curve about the $ x$ axis. Let $ r,\ l$ vary in such a way that $ r^2 \plus{} l \equal{} c$. Find the values of $ r,\ l$ which gives the maxmimum volume.

2010 AMC 8, 12

Tags:
Of the $500$ balls in a large bag, $80\%$ are red and the rest are blue. How many of the red balls must be removed so that $75\%$ of the remaining balls are red? $ \textbf{(A)}\ 25 \qquad\textbf{(B)}\ 50\qquad\textbf{(C)}\ 75\qquad\textbf{(D)}\ 100\qquad\textbf{(E)}\ 150 $

2023 Balkan MO Shortlist, G1

Tags: geometry
Let $ABCD$ be a circumscribed quadrilateral and let $X$ be the intersection point of its diagonals $AC$ and $BD$. Let $I_1, I_2, I_3, I_4$ be the incenters of $\triangle DXC$, $\triangle BXC$, $\triangle AXB$, and $\triangle DXA$, respectively. The circumcircle of $\triangle CI_1I_2$ intersects the sides $CB$ and $CD$ at points $P$ and $Q$, respectively. The circumcircle of $\triangle AI_3I_4$ intersects the sides $AB$ and $AD$ at points $M$ and $N$, respectively. Prove that $AM+CQ=AN+CP$

1949 Moscow Mathematical Olympiad, 157

a) Prove that if a planar polygon has several axes of symmetry, then all of them intersect at one point. b) A finite solid body is symmetric about two distinct axes. Describe the position of the symmetry planes of the body.

2022 Centroamerican and Caribbean Math Olympiad, 3

Let $ABC$ an acutangle triangle with orthocenter $H$ and circumcenter $O$. Let $D$ the intersection of $AO$ and $BH$. Let $P$ be the point on $AB$ such that $PH=PD$. Prove that the points $B, D, O$ and $P$ lie on a circle.

2007 Iran Team Selection Test, 2

Suppose $n$ lines in plane are such that no two are parallel and no three are concurrent. For each two lines their angle is a real number in $[0,\frac{\pi}2]$. Find the largest value of the sum of the $\binom n2$ angles between line. [i]By Aliakbar Daemi[/i]

2002 Stanford Mathematics Tournament, 3

Tags: geometry
An equilateral triangle has has sides $1$ inch long. An ant walks around the triangle maintaining a distance of $1$ inch from the triangle at all times. How far does the ant walk?

2021 Science ON grade XI, 3

$\textbf{(a)}$ Let $a,b \in \mathbb{R}$ and $f,g :\mathbb{R}\rightarrow \mathbb{R}$ be differentiable functions. Consider the function $$h(x)=\begin{vmatrix} a &b &x\\ f(a) &f(b) &f(x)\\ g(a) &g(b) &g(x)\\ \end{vmatrix}$$ Prove that $h$ is differentiable and find $h'$. \\ \\ $\textbf{(b)}$ Let $n\in \mathbb{N}$, $n\geq 3$, take $n-1$ pairwise distinct real numbers $a_1<a_2<\dots <a_{n-1}$ with sum $\sum_{i=1}^{n-1}a_i = 0$, and consider $n-1$ functions $f_1,f_2,...f_{n-1}:\mathbb{R}\rightarrow \mathbb{R}$, each of them $n-2$ times differentiable over $\mathbb{R}$. Prove that there exists $a\in (a_1,a_{n-1})$ and $\theta, \theta_1,...,\theta_{n-1}\in \mathbb{R}$, not all zero, such that $$\sum_{k=1}^{n-1} \theta_k a_k=\theta a$$ and, at the same time, $$\sum_{k=1}^{n-1}\theta_kf_i(a_k)=\theta f_i^{(n-2)}(a)$$ for all $i\in\{1,2...,n-1\} $. \\ \\ [i](Sergiu Novac)[/i]

2007 IMO Shortlist, 1

In triangle $ ABC$ the bisector of angle $ BCA$ intersects the circumcircle again at $ R$, the perpendicular bisector of $ BC$ at $ P$, and the perpendicular bisector of $ AC$ at $ Q$. The midpoint of $ BC$ is $ K$ and the midpoint of $ AC$ is $ L$. Prove that the triangles $ RPK$ and $ RQL$ have the same area. [i]Author: Marek Pechal, Czech Republic[/i]

2018 Mathematical Talent Reward Programme, SAQ: P 3

Tags: function , algebra
Does there exist any continuous function $ f$ such that $ f(f(x))=-x^{2019}\ \forall\ x \in \mathbb{R}$

2006 Singapore Team Selection Test, 1

Tags: geometry
In the plane containing a triangle $ABC$, points $A'$, $B'$ and $C'$ distinct from the vertices of $ABC$ lie on the lines $BC$, $AC$ and $AB$ respectively such that $AA'$, $BB'$ and $CC'$ are concurrent at $G$ and $AG/GA' = BG/GB' = CG/GC'$. Prove that $G$ is the centroid of $ABC$.

1969 IMO Shortlist, 37

$(HUN 4)$IMO2 If $a_1, a_2, . . . , a_n$ are real constants, and if $y = \cos(a_1 + x) +2\cos(a_2+x)+ \cdots+ n \cos(a_n + x)$ has two zeros $x_1$ and $x_2$ whose difference is not a multiple of $\pi$, prove that $y = 0.$

1989 All Soviet Union Mathematical Olympiad, 499

Do there exist two reals whose sum is rational, but the sum of their $n$ th powers is irrational for all $n > 1$? Do there exist two reals whose sum is irrational, but the sum of whose $n$ th powers is rational for all $n > 1$?

2020 Peru Cono Sur TST., P2

Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ that satisfy the conditions: $i) f(f(x)) = xf(x) - x^2 + 2,\forall x\in\mathbb{Z}$ $ii) f$ takes all integer values

2024 Bulgarian Autumn Math Competition, 10.3

Find all polynomials $P$ with integer coefficients, for which there exists a number $N$, such that for every natural number $n \geq N$, all prime divisors of $n+2^{\lfloor \sqrt{n} \rfloor}$ are also divisors of $P(n)$.