This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1982 IMO Longlists, 9

Given any two real numbers $\alpha$ and $\beta , 0 \leq \alpha < \beta \leq 1$, prove that there exists a natural number $m$ such that \[\alpha < \frac{\phi(m)}{m} < \beta.\]

2015 BAMO, 2

Members of a parliament participate in various committees. Each committee consists of at least $2$ people, and it is known that every two committees have at least one member in common. Prove that it is possible to give each member a colored hat (hats are available in black, white or red) so that every committee contains at least $2$ members with different hat colors.

2011 Saint Petersburg Mathematical Olympiad, 4

Call integer number $x$ as far from squares and cubes, if for every integer $k$ it is true : $|x-k^2|>10^6,|x-k^3|>10^6$. Prove, that there are infinitely many far from squares and cubes degrees of $2$

2021 AMC 10 Spring, 21

A square piece of paper has side length $1$ and vertices $A,B,C,$ and $D$ in that order. As shown in the figure, the paper is folded so that vertex $C$ meets edge $\overline{AD}$ at point $C’$, and edge $\overline{BC}$ intersects edge $\overline{AB}$ at point $E$. Suppose that $C’D=\frac{1}{3}$. What is the perimeter of $\triangle AEC’$? [asy] //Diagram by Samrocksnature pair A=(0,1); pair CC=(0.666666666666,1); pair D=(1,1); pair F=(1,0.62); pair C=(1,0); pair B=(0,0); pair G=(0,0.25); pair H=(-0.13,0.41); pair E=(0,0.5); dot(A^^CC^^D^^C^^B^^E); draw(E--A--D--F); draw(G--B--C--F, dashed); fill(E--CC--F--G--H--E--CC--cycle, gray); draw(E--CC--F--G--H--E--CC); label("A",A,NW); label("B",B,SW); label("C",C,SE); label("D",D,NE); label("E",E,NW); label("C'",CC,N); [/asy] $\textbf{(A) }2 \qquad \textbf{(B) }1+\frac{2}{3}\sqrt{3} \qquad \textbf{(C) }\frac{13}{6} \qquad \textbf{(D) }1+\frac{3}{4}\sqrt{3} \qquad \textbf{(E) }\frac{7}{3}$

2011 Vietnam National Olympiad, 3

Let $AB$ be a diameter of a circle $(O)$ and let $P$ be any point on the tangent drawn at $B$ to $(O).$ Define $AP\cap (O)=C\neq A,$ and let $D$ be the point diametrically opposite to $C.$ If $DP$ meets $(O)$ second time in $E,$ then, [b](i)[/b] Prove that $AE, BC, PO$ concur at $M.$ [b](ii)[/b] If $R$ is the radius of $(O),$ find $P$ such that the area of $\triangle AMB$ is maximum, and calculate the area in terms of $R.$

2006 Cuba MO, 2

Let $U$ be the center of the circle inscribed in the triangle $ABC$, $O_1$, $O_2$ and $O_3$ the centers of the circles circumscribed by the triangles $BCU$, $CAU$ and $ABU$ respectively. Prove that the circles circumscribed around the triangles $ABC$ and $O_1O_2O_3$ have the same center.

1994 Turkey Team Selection Test, 1

Tags: geometry , ratio
Let $P,Q,R$ be points on the sides of $\triangle ABC$ such that $P \in [AB],Q\in[BC],R\in[CA]$ and $\frac{|AP|}{|AB|} = \frac {|BQ|}{|BC|} =\frac{|CR|}{|CA|} =k < \frac 12$ If $G$ is the centroid of $\triangle ABC$, find the ratio $\frac{Area(\triangle PQG)}{Area(\triangle PQR)}$ .

2013 Harvard-MIT Mathematics Tournament, 8

Let $x,y$ be complex numbers such that $\dfrac{x^2+y^2}{x+y}=4$ and $\dfrac{x^4+y^4}{x^3+y^3}=2$. Find all possible values of $\dfrac{x^6+y^6}{x^5+y^5}$.

2003 JBMO Shortlist, 1

Tags: geometry
Is there is a convex quadrilateral which the diagonals divide into four triangles with areas of distinct primes?

2012 ITAMO, 4

Let $x_1,x_2,x_3, \cdots$ be a sequence defined by the following recurrence relation: \[ \begin{cases}x_{1}&= 4\\ x_{n+1}&= x_{1}x_{2}x_{3}\cdots x_{n}+5\text{ for }n\ge 1\end{cases} \] The first few terms of the sequence are $x_1=4,x_2=9,x_3=41 \cdots$ Find all pairs of positive integers $\{a,b\}$ such that $x_a x_b$ is a perfect square.

2005 IMO Shortlist, 6

Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$. [i]Proposed by Mohsen Jamali, Iran[/i]

2010 Tournament Of Towns, 2

Tags: geometry
Karlson and Smidge divide a cake in a shape of a square in the following way. First, Karlson places a candle on the cake (chooses some interior point). Then Smidge makes a straight cut from the candle to the boundary in the direction of his choice. Then Karlson makes a straight cut from the candle to the boundary in the direction perpendicular to Smidge's cut. As a result, the cake is split into two pieces; Smidge gets the smaller one. Smidge wants to get a piece which is no less than a quarter of the cake. Can Karlson prevent Smidge from getting the piece of that size?

2023 AMC 12/AHSME, 19

Tags: probability
Each of $2023$ balls is placed in on of $3$ bins. Which of the following is closest to the probability that each of the bins will contain an odd number of balls? $\textbf{(A) } \frac{2}{3} \qquad \textbf{(B) } \frac{3}{10} \qquad \textbf{(C) } \frac{1}{2} \qquad \textbf{(D) } \frac{1}{3} \qquad \textbf{(E) } \frac{1}{4}$

2016 Uzbekistan National Olympiad, 1

$\omega$ is circumcircle of triangle $ABC$ and $BB_1, CC_1$ are bisectors of ABC. $I$ is center incirle . $B_1 C1$ and $\omega$ intersects at $M$ and $N$ . Find the ratio of circumradius of $ABC$ to circumradius $MIN$.

2018 Harvard-MIT Mathematics Tournament, 3

Tags:
A $4\times 4$ window is made out of $16$ square windowpanes. How many ways are there to stain each of the windowpanes, red, pink, or magenta, such that each windowpane is the same color as exactly two of its neighbors? Two different windowpanes are neighbors if they share a side.

2022 Mexican Girls' Contest, 8

Let $n$ be a positive integer. Consider a figure of a equilateral triangle of side $n$ and splitted in $n^2$ small equilateral triangles of side $1$. One will mark some of the $1+2+\dots+(n+1)$ vertices of the small triangles, such that for every integer $k\geq 1$, there is [b]not[/b] any trapezoid(trapezium), whose the sides are $(1,k,1,k+1)$, with all the vertices marked. Furthermore, there are [b]no[/b] small triangle(side $1$) have your three vertices marked. Determine the greatest quantity of marked vertices.

1974 Vietnam National Olympiad, 3

Let $ABC$ be a triangle with $A = 90^o, AH$ the altitude, $P,Q$ the feet of the perpendiculars from $H$ to $AB,AC$ respectively. Let $M$ be a variable point on the line $PQ$. The line through $M$ perpendicular to $MH$ meets the lines $AB,AC$ at $R, S$ respectively. i) Prove that circumcircle of $ARS$ always passes the fixed point $H$. ii) Let $M_1$ be another position of $M$ with corresponding points $R_1, S_1$. Prove that the ratio $RR_1/SS_1$ is constant. iii) The point $K$ is symmetric to $H$ with respect to $M$. The line through $K$ perpendicular to the line $PQ$ meets the line $RS$ at $D$. Prove that$ \angle BHR = \angle DHR, \angle DHS = \angle CHS$.

2005 Taiwan TST Round 2, 1

Tags: algebra
Prove that \[\displaystyle \sum_{\{i,j,k\}=\{1,2,3\}} \csc ^{13} \frac{2^i \pi}{7}\csc ^{14} \frac{2^j \pi}{7}\csc ^{2005} \frac{2^k\pi}{7}\] is rational. Here, $(i,j,k)$ is summed over all possible permutations of $(1,2,3)$.

2013 Stanford Mathematics Tournament, 13

Tags:
A board has $2$, $4$, and $6$ written on it. A person repeatedly selects (not necessarily distinct) values for $x$, $y$, and $z$ from the board, and writes down $xyz+xy+yz+zx+x+y+z$ if and only if that number is not yet on the board and is also less than or equal to $2013$. This person repeats this process until no more numbers can be written. How many numbers will be written at the end of the process?

2021 Saint Petersburg Mathematical Olympiad, 6

A school has $450$ students. Each student has at least $100$ friends among the others and among any $200$ students, there are always two that are friends. Prove that $302$ students can be sent on a kayak trip such that each of the $151$ two seater kayaks contain people who are friends. [i]D. Karpov[/i]

2023 Harvard-MIT Mathematics Tournament, 6

Tags: algebra
Suppose $a_1, a_2, ... , a_{100}$ are positive real numbers such that $$a_k =\frac{ka_{k-1}}{a_{k-1} - (k - 1)}$$ for $k = 2, 3, ... , 100$. Given that $a_{20} = a_{23}$, compute $a_{100}$.

2007 Iran MO (3rd Round), 4

Let $ ABC$ be a triangle, and $ D$ be a point where incircle touches side $ BC$. $ M$ is midpoint of $ BC$, and $ K$ is a point on $ BC$ such that $ AK\perp BC$. Let $ D'$ be a point on $ BC$ such that $ \frac{D'M}{D'K}=\frac{DM}{DK}$. Define $ \omega_{a}$ to be circle with diameter $ DD'$. We define $ \omega_{B},\omega_{C}$ similarly. Prove that every two of these circles are tangent.

2012 Kurschak Competition, 2

Denote by $E(n)$ the number of $1$'s in the binary representation of a positive integer $n$. Call $n$ [i]interesting[/i] if $E(n)$ divides $n$. Prove that (a) there cannot be five consecutive interesting numbers, and (b) there are infinitely many positive integers $n$ such that $n$, $n+1$ and $n+2$ are each interesting.

2011 Nordic, 3

Tags: function , algebra
Find all functions $f$ such that \[f(f(x) + y) = f(x^2-y) + 4yf(x)\] for all real numbers $x$ and $y$.

2007 District Olympiad, 2

In an urn we have red and blue balls. A person has invented the next game: he extracts balls until he realises for the first time that the number of blue balls is equal to the number of red balls. After a such game he finds out that he has extracted 10 balls, and that there does not exist 3 consecutive balls of the same color. Prove that the fifth and the sixth balls have different collors.