Found problems: 85335
2013 Harvard-MIT Mathematics Tournament, 8
Let points $A$ and $B$ be on circle $\omega$ centered at $O$. Suppose that $\omega_A$ and $\omega_B$ are circles not containing $O$ which are internally tangent to $\omega$ at $A$ and $B$, respectively. Let $\omega_A$ and $\omega_B$ intersect at $C$ and $D$ such that $D$ is inside triangle $ABC$. Suppose that line $BC$ meets $\omega$ again at $E$ and let line $EA$ intersect $\omega_A$ at $F$. If $ FC \perp CD $, prove that $O$, $C$, and $D$ are collinear.
2019 Romanian Master of Mathematics Shortlist, original P6
Let $P(x)$ be a nonconstant complex coefficient polynomial and let $Q(x,y)=P(x)-P(y).$ Suppose that polynomial $Q(x,y)$ has exactly $k$ linear factors unproportional two by tow (without counting repetitons). Let $R(x,y)$ be factor of $Q(x,y)$ of degree strictly smaller than $k$. Prove that $R(x,y)$ is a product of linear polynomials.
[b]Note: [/b] The [i]degree[/i] of nontrivial polynomial $\sum_{m}\sum_{n}c_{m,n}x^{m}y^{n}$ is the maximum of $m+n$ along all nonzero coefficients $c_{m,n}.$ Two polynomials are [i]proportional[/i] if one of them is the other times a complex constant.
[i]Proposed by Navid Safaie[/i]
2017 VJIMC, 2
We say that we extend a finite sequence of positive integers $(a_1,\dotsc,a_n)$ if we replace it by
\[(1,2,\dotsc,a_1-1,a_1,1,2,\dotsc,a_2-1,a_2,1,2,\dotsc,a_3-1,a_3,\dotsc,1,2,\dotsc,a_n-1,a_n)\]
i.e., each element $k$ of the original sequence is replaced by $1,2,\dotsc,k$. Géza takes the sequence $(1,2,\dotsc,9)$
and he extends it $2017$ times. Then he chooses randomly one element of the resulting sequence. What is the
probability that the chosen element is $1$?
1996 IMO Shortlist, 7
Let $ f$ be a function from the set of real numbers $ \mathbb{R}$ into itself such for all $ x \in \mathbb{R},$ we have $ |f(x)| \leq 1$ and
\[ f \left( x \plus{} \frac{13}{42} \right) \plus{} f(x) \equal{} f \left( x \plus{} \frac{1}{6} \right) \plus{} f \left( x \plus{} \frac{1}{7} \right).\]
Prove that $ f$ is a periodic function (that is, there exists a non-zero real number $ c$ such $ f(x\plus{}c) \equal{} f(x)$ for all $ x \in \mathbb{R}$).
2014 Belarusian National Olympiad, 6
Points $C_1, A_1$ and $B_1$ are marked on the sides $AB, BC$ and $CA$ of a triangle $ABC$ so that the segments $AA_1, BB_1$, and $CC_1$ are concurrent (see the fig.). It is known that the area of the white part of the triangle $ABC$ is equal to the area of its black part. Prove that at least one of the segments $AA_1, BB_1, CC_1$ is a median of the triangle $ABC$.
[img]https://1.bp.blogspot.com/-nVVhqdRdf0s/X-WVmt_gyqI/AAAAAAAAM40/943sCRGyCPwT-vqIilTCtXOXHByRLIvPwCLcBGAsYHQ/s0/2014%2Bbelarus%2B11.6.png[/img]
2005 Alexandru Myller, 4
Let $(a_n)_n$ be a sequence of positive irational numbers.
a) Prove that for every $n\in\mathbb N^*$, the binomial development $(1+a_n)^n$ admits a unique maximum term and determine its rank $r_n\in\{1,2,\ldots,n+1\}$.
b) We consider the sequences $x_n=a_n\sqrt n, n\in\mathbb N^*$ and $y_n=(1+a_n)^{r_n}, n\in\mathbb N^*$. Prove that $(x_n)_n$ is convergent if and only if the sequence $(y_n)_n$ is convergent.
[i]Eugen Paltanea[/i]
2023 Portugal MO, 5
In the village of numbers the houses are numbered from $1$ to $n$. Meanwhile, one of the houses was demolished. Duarte calculated that the average number of houses that still exist is $\frac{202}{3}$ . How many houses were there in the village and what is the number of the demolished house?
1947 Moscow Mathematical Olympiad, 135
a) Given $5$ points on a plane, no three of which lie on one line. Prove that four of these points can be taken as vertices of a convex quadrilateral.
b) Inside a square, consider a convex quadrilateral and inside the quadrilateral, take a point $A$. It so happens that no three of the $9$ points — the vertices of the square, of the quadrilateral and $A$ — lie on one line. Prove that $5$ of these points are vertices of a convex pentagon.
2008 China Team Selection Test, 1
Prove that in a plane, arbitrary $ n$ points can be overlapped by discs that the sum of all the diameters is less than $ n$, and the distances between arbitrary two are greater than $ 1$. (where the distances between two discs that have no common points are defined as that the distances between its centers subtract the sum of its radii; the distances between two discs that have common points are zero)
2016 NIMO Problems, 4
Let $f(n)=\frac{n}{3}$ if $n$ is divisible by $3$ and $f(n)=4n-10$ otherwise. Find the sum of all positive integers $c$ such that $f^5(c)=2$. (Here $f^5(x)$ means $f(f(f(f(f(x)))))$.)
[i]Proposed by Justin Stevens[/i]
2012 IMAC Arhimede, 3
Find all functions $f:Q^+ \to Q^+$ such that for any $x,y \in Q^+$ :
$$y=\frac{1}{2}\left[f\left(x+\frac{y}{x}\right)- \left(f(x)+\frac{f(y)}{f(x)}\right)\right]$$
2007 Today's Calculation Of Integral, 177
On $xy$plane the parabola $K: \ y=\frac{1}{d}x^{2}\ (d: \ positive\ constant\ number)$ intersects with the line $y=x$ at the point $P$ that is different from the origin.
Assumed that the circle $C$ is touched to $K$ at $P$ and $y$ axis at the point $Q.$
Let $S_{1}$ be the area of the region surrounded by the line passing through two points $P,\ Q$ and $K,$ or $S_{2}$ be the area of the region surrounded by the line which is passing through $P$ and parallel to $x$ axis and $K.$ Find the value of $\frac{S_{1}}{S_{2}}.$
2002 AMC 12/AHSME, 8
Suppose July of year $ N$ has five Mondays. Which of the following must occur five times in August of year $ N$? (Note: Both months have $ 31$ days.)
$ \textbf{(A)}\ \text{Monday} \qquad
\textbf{(B)}\ \text{Tuesday} \qquad
\textbf{(C)}\ \text{Wednesday} \qquad
\textbf{(D)}\ \text{Thursday} \qquad
\textbf{(E)}\ \text{Friday}$
2021 Nigerian Senior MO Round 3, 2
Let $B,C,D,E$ be four pairwise distinct collinear points and let $A$ be a point not on line $BC$. Now let the circumcircle of $ABC$ meet $AD$ and $AE$ respectively again at $F$ and $G$
Show that $DEFG$ is cyclic if and only if $AB=AC$
2013 German National Olympiad, 2
Let $\alpha$ be a real number with $\alpha>1$. Let the sequence $(a_n)$ be defined as
$$a_n=1+\sqrt[\alpha]{2+\sqrt[\alpha]{3+\ldots+\sqrt[\alpha]{n+\sqrt[\alpha]{n+1}}}}$$
for all positive integers $n$. Show that there exists a positive real constant $C$ such that $a_n<C$ for all positive integers $n$.
1974 IMO Longlists, 19
Prove that there exists, for $n \geq 4$, a set $S$ of $3n$ equal circles in space that can be partitioned into three subsets $s_5, s_4$, and $s_3$, each containing $n$ circles, such that each circle in $s_r$ touches exactly $r$ circles in $S.$
2021 Alibaba Global Math Competition, 6
Let $M(t)$ be measurable and locally bounded function, that is,
\[M(t) \le C_{a,b}, \quad \forall 0 \le a \le t \le b<\infty\]
with some constant $C_{a,b}$, from $[0,\infty)$ to $[0,\infty)$ such that
\[M(t) \le 1+\int_0^t M(t-s)(1+t)^{-1}s^{-1/2} ds, \quad \forall t \ge 0.\]
Show that
\[M(t) \le 10+2\sqrt{5}, \quad \forall t \ge 0.\]
2000 May Olympiad, 3
Let $S$ be a circle with radius $2$, let $S_1$ be a circle,with radius $1$ and tangent, internally to $S$ in $B$ and let $S_2$ be a circle, with radius $1$ and tangent to $S_1$ in $A$, but $S_2$ isn't tangent to $S$. If $K$ is the point of intersection of the line $AB$ and the circle $S$, prove that $K$ is in the circle $S_2$.
2011 ELMO Shortlist, 7
Determine whether there exist two reals $x,y$ and a sequence $\{a_n\}_{n=0}^{\infty}$ of nonzero reals such that $a_{n+2}=xa_{n+1}+ya_n$ for all $n\ge0$ and for every positive real number $r$, there exist positive integers $i,j$ such that $|a_i|<r<|a_j|$.
[i]Alex Zhu.[/i]
2005 MOP Homework, 1
We call a natural number 3-partite if the set of its divisors can be partitioned into 3 subsets each with the same sum. Show that there exist infinitely many 3-partite numbers.
2018 Middle European Mathematical Olympiad, 8
An integer $n $ is called silesian if there exist positive integers $a,b$ and $c$ such that $$n=\frac{a^2+b^2+c^2}{ab+bc+ca}.$$
$(a)$ prove that there are infinitely many silesian integers.
$(b)$ prove that not every positive integer is silesian.
2009 Sharygin Geometry Olympiad, 4
Given regular $17$-gon $A_1 ... A_{17}$. Prove that two triangles formed by lines $A_1A_4, A_2A_{10}, A_{13}A_{14}$ and $A_2A_3, A_4A_6 A_{14}A_{15} $ are equal.
(N.Beluhov)
LMT Speed Rounds, 2018 F
[b]p1.[/b] Find the area of a right triangle with legs of lengths $20$ and $18$.
[b]p2.[/b] How many $4$-digit numbers (without leading zeros) contain only $2,0,1,8$ as digits? Digits can be used more than once.
[b]p3.[/b] A rectangle has perimeter $24$. Compute the largest possible area of the rectangle.
[b]p4.[/b] Find the smallest positive integer with $12$ positive factors, including one and itself.
[b]p5.[/b] Sammy can buy $3$ pencils and $6$ shoes for $9$ dollars, and Ben can buy $4$ pencils and $4$ shoes for $10$ dollars at the same store. How much more money does a pencil cost than a shoe?
[b]p6.[/b] What is the radius of the circle inscribed in a right triangle with legs of length $3$ and $4$?
[b]p7.[/b] Find the angle between the minute and hour hands of a clock at $12 : 30$.
[b]p8.[/b] Three distinct numbers are selected at random fromthe set $\{1,2,3, ... ,101\}$. Find the probability that $20$ and $18$ are two of those numbers.
[b]p9.[/b] If it takes $6$ builders $4$ days to build $6$ houses, find the number of houses $8$ builders can build in $9$ days.
[b]p10.[/b] A six sided die is rolled three times. Find the probability that each consecutive roll is less than the roll before it.
[b]p11.[/b] Find the positive integer $n$ so that $\frac{8-6\sqrt{n}}{n}$ is the reciprocal of $\frac{80+6\sqrt{n}}{n}$.
[b]p12.[/b] Find the number of all positive integers less than $511$ whose binary representations differ from that of $511$ in exactly two places.
[b]p13.[/b] Find the largest number of diagonals that can be drawn within a regular $2018$-gon so that no two intersect.
[b]p14.[/b] Let $a$ and $b$ be positive real numbers with $a > b $ such that $ab = a +b = 2018$. Find $\lfloor 1000a \rfloor$. Here $\lfloor x \rfloor$ is equal to the greatest integer less than or equal to $x$.
[b]p15.[/b] Let $r_1$ and $r_2$ be the roots of $x^2 +4x +5 = 0$. Find $r^2_1+r^2_2$ .
[b]p16.[/b] Let $\vartriangle ABC$ with $AB = 5$, $BC = 4$, $C A = 3$ be inscribed in a circle $\Omega$. Let the tangent to $\Omega$ at $A$ intersect $BC$ at $D$ and let the tangent to $\Omega$ at $B$ intersect $AC$ at $E$. Let $AB$ intersect $DE$ at $F$. Find the length $BF$.
[b]p17.[/b] A standard $6$-sided die and a $4$-sided die numbered $1, 2, 3$, and $4$ are rolled and summed. What is the probability that the sum is $5$?
[b]p18.[/b] Let $A$ and $B$ be the points $(2,0)$ and $(4,1)$ respectively. The point $P$ is on the line $y = 2x +1$ such that $AP +BP$ is minimized. Find the coordinates of $P$.
[b]p19.[/b] Rectangle $ABCD$ has points $E$ and $F$ on sides $AB$ and $BC$, respectively. Given that $\frac{AE}{BE}=\frac{BF}{FC}= \frac12$, $\angle ADE = 30^o$, and $[DEF] = 25$, find the area of rectangle $ABCD$.
[b]p20.[/b] Find the sum of the coefficients in the expansion of $(x^2 -x +1)^{2018}$.
[b]p21.[/b] If $p,q$ and $r$ are primes with $pqr = 19(p+q+r)$, find $p +q +r$ .
[b]p22.[/b] Let $\vartriangle ABC$ be the triangle such that $\angle B$ is acute and $AB < AC$. Let $D$ be the foot of altitude from $A$ to $BC$ and $F$ be the foot of altitude from $E$, the midpoint of $BC$, to $AB$. If $AD = 16$, $BD = 12$, $AF = 5$, find the value of $AC^2$.
[b]p23.[/b] Let $a,b,c$ be positive real numbers such that
(i) $c > a$
(ii) $10c = 7a +4b +2024$
(iii) $2024 = \frac{(a+c)^2}{a}+ \frac{(c+a)^2}{b}$.
Find $a +b +c$.
[b]p24.[/b] Let $f^1(x) = x^2 -2x +2$, and for $n > 1$ define $f^n(x) = f ( f^{n-1}(x))$. Find the greatest prime factor of $f^{2018}(2019)-1$.
[b]p25.[/b] Let $I$ be the incenter of $\vartriangle ABC$ and $D$ be the intersection of line that passes through $I$ that is perpendicular to $AI$ and $BC$. If $AB = 60$, $C A =120$, and $CD = 100$, find the length of $BC$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023-24 IOQM India, 16
The six sides of a convex hexagon $A_1 A_2 A_3 A_4 A_5 A_6$ are colored red. Each of the diagonals of the hexagon is colored either red or blue. If $N$ is the number of colorings such that every triangle $A_i A_j A_k$, where $1 \leq i<j<k \leq 6$, has at least one red side, find the sum of the squares of the digits of $N$.
2023 Math Prize for Girls Problems, 4
Let $\triangle A_1A_2A_3$ be an equilateral triangle with unit side length. For $k = 1$, $2$, and $3$, let $B_k$ be the point on the boundary of $\triangle A_1A_2A_3$ located $1/3$ unit away from $A_k$ in the clockwise direction and let $C_k$ be the point on the boundary of $\triangle A_1A_2A_3$ located $1/3$ unit away from $A_k$ in the counterclockwise direction. What fraction of the area of $\triangle A_1A_2A_3$ is the area of the intersection of $\triangle B_1B_2B_3$ and $\triangle C_1C_2C_3$?