This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2003 IMC, 2

Evaluate $\lim_{x\rightarrow 0^+}\int^{2x}_x\frac{\sin^m(t)}{t^n}dt$. ($m,n\in\mathbb{N}$)

2008 Indonesia TST, 3

$10$ people attended a party. For every $3$ people, there exist at least $2$ people who don’t know each other. Prove that there exist $4$ people who don’t know each other.

1957 Putnam, A2

Let $a>1.$ A uniform wire is bent into a form coinciding with the portion of the curve $y=e^x$ for $x\in [0,a]$, and the line segment $y=e^a$ for $x\in [a-1,a].$ The wire is then suspended from the point $(a-1, e^a)$ and a horizontal force $F$ is applied to the point $(0,1)$ to hold the wire in coincidence with the curve and segment. Show that the force $F$ is directed to the right.

2022 Romania Team Selection Test, 5

Given is an integer $k\geq 2$. Determine the smallest positive integer $n$, such that, among any $n$ points in the plane, there exist $k$ points among them, such that all distances between them are less than or equal to $2$, or all distances are strictly greater than $1$.

2003 All-Russian Olympiad, 2

Two circles $S_1$ and $S_2$ with centers $O_1$ and $O_2$ respectively intersect at $A$ and $B$. The tangents at $A$ to $S_1$ and $S_2$ meet segments $BO_2$ and $BO_1$ at $K$ and $L$ respectively. Show that $KL \parallel O_1O_2.$

2020 Portugal MO, 4

Determine the fractions of a fraction of the form $\frac{1}{ab}$ where $a,b$ are prime natural numbers such that $0 < a < b \le 200$ and $a + b > 200$

2021-2022 OMMC, 4

Tags: algebra
If $x, y, z$ satisfy $x+y+z = 12, \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2$ and $x^3+y^3+z^3 = -480,$ find $$x^2 y + xy^2 + x^2 z + xz^2 + y^2 z + yz^2.$$ [i]Proposed by Mahith Gottipati[/i]

2021 Malaysia IMONST 1, 6

Tags: geometry
Given a segment of a circle, consisting of a straight edge and an arc. The length of the straight edge is $24$. The length between the midpoint of the straight edge and the midpoint of the arc is $6$. Find the radius of the circle.

2018-IMOC, G3

Given an acute $\vartriangle ABC$ whose orthocenter is denoted by $H$. A line $\ell$ passes $H$ and intersects $AB,AC$ at $P ,Q$ such that $H$ is the mid-point of $P,Q$. Assume the other intersection of the circumcircle of $\vartriangle ABC$ with the circumcircle of $\vartriangle APQ$ is $X$. Let $C'$ is the symmetric point of $C$ with respect to $X$ and $Y$ is the another intersection of the circumcircle of $\vartriangle ABC$ and $AO$, where O is the circumcenter of $\vartriangle APQ$. Show that $CY$ is tangent to circumcircle of $\vartriangle BCC'$. [img]https://1.bp.blogspot.com/-itG6m1ipAfE/XndLDUtSf7I/AAAAAAAALfc/iZahX6yNItItRSXkDYNofR5hKApyFH84gCK4BGAYYCw/s1600/2018%2Bimoc%2Bg3.png[/img]

2019 Jozsef Wildt International Math Competition, W. 58

In the $[ABCD]$ tetrahedron having all the faces acute angled triangles, is denoted by $r_X$, $R_X$ the radius lengths of the circle inscribed and circumscribed respectively on the face opposite to the $X \in \{A,B,C,D\}$ peak, and with $R$ the length of the radius of the sphere circumscribed to the tetrahedron. Show that inequality occurs$$8R^2 \geq (r_A + R_A)^2 + (r_B + R_B)^2 + (r_C + R_C)^2 + (r_D + R_D)^2$$

2011 IFYM, Sozopol, 6

Solve the following system of equations in integers: $\begin{cases} x^2+2xy+8z=4z^2+4y+8\\ x^2+y+2z=156 \\ \end{cases}$

2022 Junior Balkan Team Selection Tests - Moldova, 2

Let n be the natural number ($n\ge 2$). All natural numbers from $1$ up to $n$ ,inclusive, are written on the board in some order: $a_1$, $a_2$ , $...$ , $a_n$. Determine all natural numbers $n$ ($n\ge 2$), for which the product $$P = (1 + a_1) \cdot (2 + a_2) \cdot ... \cdot (n + a_n)$$ is an even number, whatever the arrangement of the numbers written on the board.

2004 Putnam, A5

An $m\times n$ checkerboard is colored randomly: each square is independently assigned red or black with probability $\frac12.$ we say that two squares, $p$ and $q$, are in the same connected monochromatic region if there is a sequence of squares, all of the same color, starting at $p$ and ending at $q,$ in which successive squares in the sequence share a common side. Show that the expected number of connected monochromatic regions is greater than $\frac{mn}8.$

2001 National Olympiad First Round, 27

Tags:
If decimal representation of $2^n$ starts with $7$, what is the first digit in decimal representation of $5^n$? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 9 $

1970 IMO Longlists, 41

Let a cube of side $1$ be given. Prove that there exists a point $A$ on the surface $S$ of the cube such that every point of $S$ can be joined to $A$ by a path on $S$ of length not exceeding $2$. Also prove that there is a point of $S$ that cannot be joined with $A$ by a path on $S$ of length less than $2$.

2021 China Team Selection Test, 6

Tags: geometry
Find the smallest positive real constant $a$, such that for any three points $A,B,C$ on the unit circle, there exists an equilateral triangle $PQR$ with side length $a$ such that all of $A,B,C$ lie on the interior or boundary of $\triangle PQR$.

2015 ASDAN Math Tournament, 9

Tags:
You play a game with a biased coin, which has probability $\tfrac{3}{4}$ of landing heads. Each time you toss heads, you score $1$ point, while tossing tails earns no points. After any turn, you can stop playing the game and keep the points you currently have. However, if you are still playing when you toss tails for the second time, you lose all of your points. If you play to maximize your expected score, what is your expected score from playing this game?

2016 South African National Olympiad, 2

Determine all pairs of real numbers $a$ and $b$, $b > 0$, such that the solutions to the two equations $$x^2 + ax + a = b \qquad \text{and} \qquad x^2 + ax + a = -b$$ are four consecutive integers.

2005 VTRMC, Problem 2

Find, and write out explicitly, a permutation $\{p(1),p(2),\ldots,p(20)\}$ of $\{1,2,\ldots,20\}$ such that $k+p(k)$ is a power of $2$ for $k=1,2,\ldots,20$, and prove that only one such permutation exists.

2012 Purple Comet Problems, 20

Square $ABCD$ has side length $68$. Let $E$ be the midpoint of segment $\overline{CD}$, and let $F$ be the point on segment $\overline{AB}$ a distance $17$ from point $A$. Point $G$ is on segment $\overline{EF}$ so that $\overline{EF}$ is perpendicular to segment $\overline{GD}$. The length of segment $\overline{BG}$ can be written as $m\sqrt{n}$ where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.

1974 Swedish Mathematical Competition, 1

Tags: sequence , sum , algebra
Let $a_n = 2^{n-1}$ for $n > 0$. Let \[ b_n = \sum\limits_{r+s \leq n} a_ra_s \] Find $b_n-b_{n-1}$, $b_n-2b_{n-1}$ and $b_n$.

2011 Romania National Olympiad, 2

Find all numbers $ n $ for which there exist three (not necessarily distinct) roots of unity of order $ n $ whose sum is $ 1. $

2020 USMCA, 17

Tags:
Let $P(x)$ be the product of all linear polynomials $ax+b$, where $a,b\in \{0,\ldots,2016\}$ and $(a,b)\neq (0,0)$. Let $R(x)$ be the remainder when $P(x)$ is divided by $x^5-1$. Determine the remainder when $R(5)$ is divided by $2017$.

2013 Bogdan Stan, 4

Solve in the real numbers the equation $ 3^{\sqrt[3]{x-1}} \left( 1-\log_3^3 x \right) =1. $ [i]Ion Gușatu[/i]

2012 CIIM, Problem 6

Tags:
Let $n \geq 2$ and $p(x) = x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ a polynomial with real coefficients. Show that if there exists a positive integer $k$ such that $(x-1)^{k+1}$ divides $p(x)$ then \[\sum_{j=0}^{n-1}|a_j| > 1 +\frac{2k^2}{n}.\]