This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2021 Peru PAGMO TST, P1

Find all positive integers $n$ for which there exist positive integers $a, b,$ and $c$ that satisfy the following three conditions: $\bullet$ $a+b+c=n$ $\bullet$ $a$ is a divisor of $b$ and $b$ is a divisor of $c$ $\bullet$ $a < b < c$

1995 Romania Team Selection Test, 1

How many colorings of an $n$-gon in $p \ge 2$ colors are there such that no two neighboring vertices have the same color?

2007 National Olympiad First Round, 12

Tags:
In how many ways can $10$ distinct books be placed onto $3$-shelf bookcase in such a way that no shelf is empty? $ \textbf{(A)}\ 36\cdot 10! \qquad\textbf{(B)}\ 50 \cdot 10! \qquad\textbf{(C)}\ 55 \cdot 10! \qquad\textbf{(D)}\ 81 \cdot 10! \qquad\textbf{(E)}\ \text{None of the above} $

2023-IMOC, C1

There are $n$ cards on a table in a line, with a positive real written on eachcard. LTF and Sunny are playing a game where they take turns taking away the first or the last card in line. The player that has the bigger sum of all the numberson his cards wins. If LTF goes first, find all $n$ such that LTF can always prevent Sunny from winning, regardless of the numbers written on the cards.

1984 AMC 12/AHSME, 26

In the obtuse triangle $ABC$, $AM = MB, MD \perp BC, EC \perp BC$. If the area of $\triangle ABC$ is 24, then the area of $\triangle BED$ is [asy] size(200); defaultpen(linewidth(0.8)+fontsize(11pt)); pair A = (6.5,3.2), B = origin, C = (5.0), D = (3.3,0); pair Xc = (C.x,4), Xd = (D.x,4), E = intersectionpoint(A--B,C--Xc), M = intersectionpoint(D--Xd, A--B); draw(C--A--B--C--E--D--M); label("$A$",A,NE); label("$B$",B,W); label("$C$",C,SE); label("$D$",D,S); label("$E$",E,N); label("$M$",M,N); draw(rightanglemark(D,C,E,7)^^rightanglemark(B,D,M,7)); [/asy] $\textbf{(A) }9\qquad \textbf{(B) }12\qquad \textbf{(C) }15\qquad \textbf{(D) }18\qquad \textbf{(E) }\text{not uniquely determined}$

1981 All Soviet Union Mathematical Olympiad, 313

Find all the sequences of natural $k_n$ with two properties: a) $k_n \le n \sqrt {n}$ for all $n$ b) $(k_n - k_m)$ is divisible by $(m-n)$ for all $m>n$

1960 Polish MO Finals, 3

Tags: cyclic , geometry , hexagon
On the circle 6 distinct points $ A $, $ B $, $ C $, $ D $, $ E $, $ F $ are chosen in such a way that $ AB $ is parallel to $ DE $, and $ DC $ is parallel to $ AF $. Prove that $ BC $ is parallel to $ EF $

1953 AMC 12/AHSME, 5

Tags: logarithm
If $ \log_6 x\equal{}2.5$, the value of $ x$ is: $ \textbf{(A)}\ 90 \qquad\textbf{(B)}\ 36 \qquad\textbf{(C)}\ 36\sqrt{6} \qquad\textbf{(D)}\ 0.5 \qquad\textbf{(E)}\ \text{none of these}$

2023 India IMO Training Camp, 1

The numbers $1,2,3,4,\ldots , 39$ are written on a blackboard. In one step we are allowed to choose two numbers $a$ and $b$ on the blackboard such that $a$ divides $b$, and replace $a$ and $b$ by the single number $\tfrac{b}{a}$. This process is continued till no number on the board divides any other number. Let $S$ be the set of numbers which is left on the board at the end. What is the smallest possible value of $|S|$? [i]Proposed by B.J. Venkatachala[/i]

2001 India IMO Training Camp, 1

For any positive integer $n$, show that there exists a polynomial $P(x)$ of degree $n$ with integer coefficients such that $P(0),P(1), \ldots, P(n)$ are all distinct powers of $2$.

2012 Argentina National Olympiad, 6

In each square of a $2012\times 2012$ board there's a person. People are either honest, who always tell the truth, or liars, who always lie. At a given moment, each person makes the same statement: "In my row there are the same number of liars as in my column." Determine the minimum number of honest people that can be on the board.

2007 Postal Coaching, 1

Let $P$ be a point on the circumcircle of a square $ABCD$. Find all integers $n > 0$ such that the sum $$S_n(P) = |PA|^n + |PB|^n + |PC|^n + |PD|^n$$ is constant with respect to the point $P$.

2009 Junior Balkan Team Selection Tests - Moldova, 5

Find the lowest odd positive integer with an odd number of divisors and is divisible by $d^2$ and $a+b+c+d+e+f$, where $a, b, c, d, e, f$ are consecutive prime numbers.

2009 Sharygin Geometry Olympiad, 5

Let $n$ points lie on the circle. Exactly half of triangles formed by these points are acute-angled. Find all possible $n$. (B.Frenkin)

2003 National Olympiad First Round, 20

Tags:
How many real numbers $x$ are there such that $\sqrt{ x + 1 - 4\sqrt{x-3}} + \sqrt{ x + 6 - 6\sqrt{x-3}} = 1$? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ \text{None of the preceding} $

2000 Junior Balkan Team Selection Tests - Romania, 2

Find all natural numbers $ n $ for which there exists two natural numbers $ a,b $ such that $$ n=S(a)=S(b)=S(a+b) , $$ where $ S(k) $ denotes the sum of the digits of $ k $ in base $ 10, $ for any natural number $ k. $ [i]Vasile Zidaru[/i] and [i]Mircea Lascu[/i]

2001 Belarusian National Olympiad, 8

There are $n$ aborigines on an island. Any two of them are either friends or enemies. One day, the chieftain orders that all citizens (including himself) make and wear a necklace with zero or more stones so that: (i) given a pair of friends, there exists a color such that each has a stone of that color; (ii) given a pair of enemies,there does not exist a color such that each a stone of that color. (a) Prove that the aborigines can carry out the chieftain’s order. (b) What is the minimum number of colors of stones required for the aborigines to carry out the chieftain’s order?

2007 IMO, 4

In triangle $ ABC$ the bisector of angle $ BCA$ intersects the circumcircle again at $ R$, the perpendicular bisector of $ BC$ at $ P$, and the perpendicular bisector of $ AC$ at $ Q$. The midpoint of $ BC$ is $ K$ and the midpoint of $ AC$ is $ L$. Prove that the triangles $ RPK$ and $ RQL$ have the same area. [i]Author: Marek Pechal, Czech Republic[/i]

2013 Sharygin Geometry Olympiad, 5

Tags: rhombus , geometry
Four segments drawn from a given point inside a convex quadrilateral to its vertices, split the quadrilateral into four equal triangles. Can we assert that this quadrilateral is a rhombus?

2018 All-Russian Olympiad, 6

Three diagonals of a regular $n$-gon prism intersect at an interior point $O$. Show that $O$ is the center of the prism. (The diagonal of the prism is a segment joining two vertices not lying on the same face of the prism.)

2018 JBMO Shortlist, A6

For $a,b,c$ positive real numbers such that $ab+bc+ca=3$, prove: $ \frac{a}{\sqrt{a^3+5}}+\frac{b}{\sqrt{b^3+5}}+\frac{c}{\sqrt{c^3+5}} \leq \frac{\sqrt{6}}{2}$ [i]Proposed by Dorlir Ahmeti, Albania[/i]

2012 Hitotsubashi University Entrance Examination, 3

For constants $a,\ b,\ c,\ d$ consider a process such that the point $(p,\ q)$ is mapped onto the point $(ap+bq,\ cp+dq)$. Note : $(a,\ b,\ c,\ d)\neq (1,\ 0,\ 0,\ 1)$. Let $k$ be non-zero constant. All points of the parabola $C: y=x^2-x+k$ are mapped onto $C$ by the process. (1) Find $a,\ b,\ c,\ d$. (2) Let $A'$ be the image of the point $A$ by the process. Find all values of $k$ and the coordinates of $A$ such that the tangent line of $C$ at $A$ and the tangent line of $C$ at $A'$ formed by the process are perpendicular at the origin.

1990 Tournament Of Towns, (266) 4

A square board with dimensions $100 \times 100$ is divided into $10 000 $unit squares. One of the squares is cut out. Is it possible to cover the rest of the board by isosceles right angled triangles which have hypotenuses of length $2$, and in such a way that their hypotenuses lie on sides of the squares and their other two sides lie on diagonals? The triangles must not overlap each other or extend beyond the edges of the board. (S Fomin, Leningrad)

2022 Vietnam National Olympiad, 1

Let $a$ be a non-negative real number and a sequence $(u_n)$ defined as: $u_1=6,u_{n+1} = \frac{2n+a}{n} + \sqrt{\frac{n+a}{n}u_n+4}, \forall n \ge 1$ a) With $a=0$, prove that there exist a finite limit of $(u_n)$ and find that limit b) With $a \ge 0$, prove that there exist a finite limit of $(u_n)$

2013 Denmark MO - Mohr Contest, 5

The angle bisector of $A$ in triangle $ABC$ intersects $BC$ in the point $D$. The point $E$ lies on the side $AC$, and the lines $AD$ and $BE$ intersect in the point $F$. Furthermore, $\frac{|AF|}{|F D|}= 3$ and $\frac{|BF|}{|F E|}=\frac{5}{3}$. Prove that $|AB| = |AC|$. [img]https://1.bp.blogspot.com/-evofDCeJWPY/XzT9dmxXzVI/AAAAAAAAMVY/ZN87X3Cg8iMiULwvMhgFrXbdd_f1f-JWwCLcBGAsYHQ/s0/2013%2BMohr%2Bp5.png[/img]