Found problems: 85335
2013 South East Mathematical Olympiad, 8
$n\geq 3$ is a integer. $\alpha,\beta,\gamma \in (0,1)$. For every $a_k,b_k,c_k\geq0(k=1,2,\dotsc,n)$ with $\sum\limits_{k=1}^n(k+\alpha)a_k\leq \alpha, \sum\limits_{k=1}^n(k+\beta)b_k\leq \beta, \sum\limits_{k=1}^n(k+\gamma)c_k\leq \gamma$, we always have $\sum\limits_{k=1}^n(k+\lambda)a_kb_kc_k\leq \lambda$.
Find the minimum of $\lambda$
Ukraine Correspondence MO - geometry, 2011.9
On the diagonals $AC$ and $CE$ of a regular hexagon $ABCDEF$ with side $1$ we mark points$ M$ and $N$ such that $AM = CN = a$. Find $a$ if the points $B, M, N$ lie on the same line.
2024 Serbia National Math Olympiad, 6
Find all non-constant polynomials $P(x)$ with integer coefficients and positive leading coefficient, such that $P^{2mn}(m^2)+n^2$ is a perfect square for all positive integers $m, n$.
2021 Yasinsky Geometry Olympiad, 6
Given a quadrilateral $ABCD$, around which you can circumscribe a circle. The perpendicular bisectors of sides $AD$ and $CD$ intersect at point $Q$ and intersect sides $BC$ and $AB$ at points $P$ and $K$ resepctively. It turned out that the points $K, B, P, Q$ lie on the same circle. Prove that the points $A, Q, C$ lie on one line.
(Olena Artemchuk)
2014 Switzerland - Final Round, 2
Let $a,b\in\mathbb{N}$ such that :
\[ ab(a-b)\mid a^3+b^3+ab \]
Then show that $\operatorname{lcm}(a,b)$ is a perfect square.
2016 Vietnam Team Selection Test, 6
Given $16$ distinct real numbers $\alpha_1,\alpha_2,...,\alpha_{16}$. For each polynomial $P$, denote \[ V(P)=P(\alpha_1)+P(\alpha_2)+...+P(\alpha_{16}). \] Prove that there is a monic polynomial $Q$, $\deg Q=8$ satisfying:
i) $V(QP)=0$ for all polynomial $P$ has $\deg P<8$.
ii) $Q$ has $8$ real roots (including multiplicity).
2022 Germany Team Selection Test, 2
Let $n$ and $k$ be two integers with $n>k\geqslant 1$. There are $2n+1$ students standing in a circle. Each student $S$ has $2k$ [i]neighbors[/i] - namely, the $k$ students closest to $S$ on the left, and the $k$ students closest to $S$ on the right.
Suppose that $n+1$ of the students are girls, and the other $n$ are boys. Prove that there is a girl with at least $k$ girls among her neighbors.
[i]Proposed by Gurgen Asatryan, Armenia[/i]
1994 Vietnam Team Selection Test, 2
Consider the equation
\[x^2 + y^2 + z^2 + t^2 - N \cdot x \cdot y \cdot z \cdot t - N = 0\]
where $N$ is a given positive integer.
a) Prove that for an infinite number of values of $N$, this equation has positive integral solutions (each such solution consists of four positive integers $x, y, z, t$),
b) Let $N = 4 \cdot k \cdot (8 \cdot m + 7)$ where $k,m$ are no-negative integers. Prove that the considered equation has no positive integral solutions.
2000 India Regional Mathematical Olympiad, 3
Suppose $\{ x_n \}_{n\geq 1}$ is a sequence of positive real numbers such that $x_1 \geq x_2 \geq x_3 \ldots \geq x_n \ldots$, and for all $n$ \[ \frac{x_1}{1} + \frac{x_4}{2} + \frac{x_9}{3} + \ldots + \frac{x_{n^2}}{n} \leq 1 . \] Show that for all $k$ \[ \frac{x_1}{1} + \frac{x_2}{2} +\ldots + \frac{x_k}{k} \leq 3. \]
2024 Thailand October Camp, 3
Let triangle \( ABC \) be an acute-angled triangle. Square \( AEFB \) and \( ADGC \) lie outside triangle \( ABC \). \( BD \) intersects \( CE \) at point \( H \), and \( BG \) intersects \( CF \) at point \( I \). The circumcircle of triangle \( BFI \) intersects the circumcircle of triangle \( CGI \) again at point \( K \). Prove that line segment \( HK \) bisects \( BC \).
2010 Malaysia National Olympiad, 7
Let $ABC$ be a triangle in which $AB=AC$. A point $I$ lies inside the triangle such that $\angle ABI=\angle CBI$ and $\angle BAI=\angle CAI$. Prove that \[\angle BIA=90^o+\dfrac{\angle C}{2}\]
2017 Harvard-MIT Mathematics Tournament, 3
A polyhedron has $7n$ faces. Show that there exist $n + 1$ of the polyhedron's faces that all have the same number of edges.
2004 Turkey Junior National Olympiad, 2
The positive integer $n$ is the sum of two positive integers that divide $n+6$. Find all possible values of $n$
2024 AMC 10, 16
Jerry likes to play with numbers. One day, he wrote all the integers from $1$ to $2024$ on the whiteboard. Then he repeatedly chose four numbers on the whiteboard, erased them, and replaced them with either their sum or their product. (For example, Jerry's first step might have been to erase $1, 2, 3$, and $5$, and then write either $11$, their sum, or $30$, their product, on the whiteboard.) After repeatedly performing this operation, Jerry noticed that all the remaining numbers on the board were odd. What is the maximum possible number of integers on the board at that time?
$
\textbf{(A) }1010 \qquad
\textbf{(B) }1011 \qquad
\textbf{(C) }1012 \qquad
\textbf{(D) }1013 \qquad
\textbf{(E) }1014 \qquad
$
2015 Finnish National High School Mathematics Comp, 5
Mikko takes a multiple choice test with ten questions. His only goal is to pass the test, and this requires seven points. A correct answer is worth one point, and answering wrong results in the deduction of one point. Mikko knows for sure that he knows the correct answer in the six first questions. For the rest, he estimates that he can give the correct answer to each problem with probability $p, 0 < p < 1$. How many questions Mikko should try?
1968 AMC 12/AHSME, 32
$A$ and $B$ move uniformly along two straight paths intersecting at right angles in point $O$. When $A$ is at $O$, $B$ is $500$ yards short of $O$. In $2$ minutes, they are equidistant from $O$, and in $8$ minutes more they are again equidistant from $O$. Then the ratio of $A'$s speed to $B'$s speed is:
$\textbf{(A)}\ 4:5 \qquad\textbf{(B)}\ 5:6 \qquad\textbf{(C)}\ 2:3 \qquad\textbf{(D)}\ 5:8 \qquad\textbf{(E)}\ 1:2$
2020 BMT Fall, 1
Justin throws a standard six-sided die three times in a row and notes the number of dots on the top face after each roll. How many different sequences of outcomes could he get?
2011 District Olympiad, 2
Consider the matrices $A\in \mathcal{M}_{m,n}(\mathbb{C})$ and $B\in \mathcal{M}_{n,m}(\mathbb{C})$ with $n\le m$. It is given that $\text{rank}(AB)=n$ and $(AB)^2=AB$.
a)Prove that $(BA)^3=(BA)^2$.
b)Find $BA$.
2017 Vietnam Team Selection Test, 1
Triangle $ABC$ is inscribed in circle $(O)$. $A$ varies on $(O)$ such that $AB>BC$. $M$ is the midpoint of $AC$. The circle with diameter $BM$ intersects $(O)$ at $R$. $RM$ intersects $(O)$ at $Q$ and intersects $BC$ at $P$. The circle with diameter $BP$ intersects $AB, BO$ at $K,S$ in this order.
a. Prove that $SR$ passes through the midpoint of $KP$.
b. Let $N$ be the midpoint of $BC$. The radical axis of circles with diameters $AN, BM$ intersects $SR$ at $E$. Prove that $ME$ always passes through a fixed point.
2002 Federal Competition For Advanced Students, Part 2, 3
Let $ABCD$ and $AEFG$ be two similar cyclic quadrilaterals (with the vertices denoted counterclockwise). Their circumcircles intersect again at point $P$. Prove that $P$ lies on line $BE$.
1994 Baltic Way, 11
Let $NS$ and $EW$ be two perpendicular diameters of a circle $\mathcal{C}$. A line $\ell$ touches $\mathcal{C}$ at point $S$. Let $A$ and $B$ be two points on $\mathcal{C}$, symmetric with respect to the diameter $EW$. Denote the intersection points of $\ell$ with the lines $NA$ and $NB$ by $A'$ and $B'$, respectively. Show that $|SA'|\cdot |SB'|=|SN|^2$.
2009 AMC 10, 15
The figures $ F_1$, $ F_2$, $ F_3$, and $ F_4$ shown are the first in a sequence of figures. For $ n\ge3$, $ F_n$ is constructed from $ F_{n \minus{} 1}$ by surrounding it with a square and placing one more diamond on each side of the new square than $ F_{n \minus{} 1}$ had on each side of its outside square. For example, figure $ F_3$ has $ 13$ diamonds. How many diamonds are there in figure $ F_{20}$?
[asy]unitsize(3mm);
defaultpen(linewidth(.8pt)+fontsize(10pt));
path d=(1/2,0)--(0,sqrt(3)/2)--(-1/2,0)--(0,-sqrt(3)/2)--cycle;
marker m=marker(scale(5)*d,Fill);
path f1=(0,0);
path f2=(0,0)--(-1,1)--(1,1)--(1,-1)--(-1,-1);
path[] g2=(-1,1)--(-1,-1)--(0,0)^^(1,-1)--(0,0)--(1,1);
path f3=f2--(-2,-2)--(-2,0)--(-2,2)--(0,2)--(2,2)--(2,0)--(2,-2)--(0,-2);
path[] g3=g2^^(-2,-2)--(0,-2)^^(2,-2)--(1,-1)^^(1,1)--(2,2)^^(-1,1)--(-2,2);
path[] f4=f3^^(-3,-3)--(-3,-1)--(-3,1)--(-3,3)--(-1,3)--(1,3)--(3,3)--
(3,1)--(3,-1)--(3,-3)--(1,-3)--(-1,-3);
path[] g4=g3^^(-2,-2)--(-3,-3)--(-1,-3)^^(3,-3)--(2,-2)^^(2,2)--(3,3)^^
(-2,2)--(-3,3);
draw(f1,m);
draw(shift(5,0)*f2,m);
draw(shift(5,0)*g2);
draw(shift(12,0)*f3,m);
draw(shift(12,0)*g3);
draw(shift(21,0)*f4,m);
draw(shift(21,0)*g4);
label("$F_1$",(0,-4));
label("$F_2$",(5,-4));
label("$F_3$",(12,-4));
label("$F_4$",(21,-4));[/asy]$ \textbf{(A)}\ 401 \qquad \textbf{(B)}\ 485 \qquad \textbf{(C)}\ 585 \qquad \textbf{(D)}\ 626 \qquad \textbf{(E)}\ 761$
1993 IberoAmerican, 1
Let $ABC$ be an equilateral triangle and $\Gamma$ its incircle. If $D$ and $E$ are points on the segments $AB$ and $AC$ such that $DE$ is tangent to $\Gamma$, show that $\frac{AD}{DB}+\frac{AE}{EC}=1$.
1989 Iran MO (2nd round), 3
Let $\{a_n\}_{n \geq 1}$ be a sequence in which $a_1=1$ and $a_2=2$ and
\[a_{n+1}=1+a_1a_2a_3 \cdots a_{n-1}+(a_1a_2a_3 \cdots a_{n-1} )^2 \qquad \forall n \geq 2.\]
Prove that
\[\lim_{n \to \infty} \biggl( \frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\cdots + \frac{1}{a_n} \biggr) =2\]
2010 AMC 8, 20
In a room, $2/5$ of the people are wearing gloves, and $3/4$ of the people are wearing hats. What is the minimum number of people in the room wearing both a hat and a glove?
$ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 20 $