This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1977 Czech and Slovak Olympiad III A, 3

Consider any complex units $Z,W$ with $\text{Im}\ Z\ge0,\text{Re}\,W\ge 0.$ Determine and draw the locus of all possible sums $S=Z+W$ in the complex plane.

2014 Costa Rica - Final Round, 1

Tags: circles , geometry
Let $ A$ and $ B$ be the intersections of two circumferences $\Gamma_1$, and $\Gamma_2$. Let $C$ and $D$ points in $\Gamma_1$ and $\Gamma_2$ respectively such that $AC = AD$. Let $E$ and $F$ be points in $\Gamma_1$ and $\Gamma_2$, such that $\angle ABE = \angle ABF = 90^o$. Let $K_1$ and $K_2$ be circumferences with centers $E$ and $F$ and radii $EC$ and $FD$ respectively. Let $T$ be a point in the line $AB$, but outside the segment, with $T\ne A$ and $T \ne A'$, where $A'$ is the point symmetric to $A$ with respect to $ B$. Let $X$ be the point of tangency of a tangent to $K_1$ passing through $T$, such that there arc two points of intersection of the line $TX$ to $K_2$. Let $Y$ and $Z$ be such points. Prove that $$\frac{1}{XT}=\frac{1}{XY} + \frac{1}{XZ}.$$

1973 Spain Mathematical Olympiad, 6

An equilateral triangle of altitude $1$ is considered. For every point $P$ on the interior of the triangle, denote by $x, y , z$ the distances from the point $P$ to the sides of the triangle. a) Prove that for every point $P$ inside the triangle it is true that $x + y + z = 1$. b) For which points of the triangle does it hold that the distance to one side is greater than the sum of the distances to the other two? c) We have a bar of length $1$ and we break it into three pieces. find the probability that with these pieces a triangle can be formed.

2025 China Team Selection Test, 15

Let \( X \) be a finite set of real numbers, \( d \) be a real number, and \(\lambda_1, \lambda_2, \cdots, \lambda_{2025}\) be 2025 non-zero real numbers. Define \[A = \left\{ (x_1, x_2, \cdots, x_{2025}) : x_1, x_2, \cdots, x_{2025} \in X \text{ and } \sum_{i=1}^{2025} \lambda_i x_i = d \right\},\] \[B = \left\{ (x_1, x_2, \cdots, x_{2024}) : x_1, x_2, \cdots, x_{2024} \in X \text{ and } \sum_{i=1}^{2024} (-1)^i x_i = 0 \right\},\] \[C = \left\{ (x_1, x_2, \cdots, x_{2026}) : x_1, x_2, \cdots, x_{2026} \in X \text{ and } \sum_{i=1}^{2026} (-1)^i x_i = 0 \right\}.\] Show that \( |A|^2 \leq |B| \cdot |C| \).

VI Soros Olympiad 1999 - 2000 (Russia), 9.4

Are there integers $k$ and $m$ for which $$\frac{(k-3)(k-2)(k-1)k+1}{(k+1)(k+2)(k+3)(k+4)+1}=m(m+1)+(m+1)(m+2)+(m+2)m \,\, ?$$

2003 Bundeswettbewerb Mathematik, 3

Consider a cyclic quadrilateral $ABCD$, and let $S$ be the intersection of $AC$ and $BD$. Let $E$ and $F$ the orthogonal projections of $S$ on $AB$ and $CD$ respectively. Prove that the perpendicular bisector of segment $EF$ meets the segments $AD$ and $BC$ at their midpoints.

2013 HMNT, 3

Tags: geometry , algebra
Let $ABC$ be a triangle with $AB = 5$, $BC = 4$, and $CA = 3$. Initially, there is an ant at each vertex. The ants start walking at a rate of $1$ unit per second, in the direction $A \to B \to C \to A$ (so the ant starting at $A$ moves along ray $\overrightarrow{AB}$, etc.). For a positive real number $t$ less than$ 3$, let $A(t)$ be the area of the triangle whose vertices are the positions of the ants after $t$ seconds have elapsed. For what positive real number $t$ less than $3$ is $A(t)$ minimized?

IV Soros Olympiad 1997 - 98 (Russia), 9.1

The football tournament was played in one round. $3$ points were given for a win, $1$ point for a draw, and $0$ points for a loss. Could it be that the first place team under the old scoring system (win - $2$ points, draw - $1$ point, loss - $0$) would be last?

2005 Spain Mathematical Olympiad, 2

Let $r,s,u,v$ be real numbers. Prove that: $$min\{r-s^2,s-u^2, u-v^2,v-r^2\}\le \frac{1}{4}$$

2016 Iranian Geometry Olympiad, 3

Tags: geometry
Find all positive integers $N$ such that there exists a triangle which can be dissected into $N$ similar quadrilaterals. [i]Proposed by Nikolai Beluhov (Bulgaria) and Morteza Saghafian[/i]

Today's calculation of integrals, 862

Draw a tangent with positive slope to a parabola $y=x^2+1$. Find the $x$-coordinate such that the area of the figure bounded by the parabola, the tangent and the coordinate axisis is $\frac{11}{3}.$

1979 IMO Longlists, 9

The real numbers $\alpha_1 , \alpha_2, \alpha_3, \ldots, \alpha_n$ are positive. Let us denote by $h = \frac{n}{1/\alpha_1 + 1/\alpha_2 + \cdots + 1/\alpha_n}$ the harmonic mean, $g=\sqrt[n]{\alpha_1\alpha_2\cdots \alpha_n}$ the geometric mean, and $a=\frac{\alpha_1+\alpha_2+\cdots + \alpha_n}{n}$ the arithmetic mean. Prove that $h \leq g \leq a$, and that each of the equalities implies the other one.

2019 IMEO, 5

Find all pairs of positive integers $(s, t)$, so that for any two different positive integers $a$ and $b$ there exists some positive integer $n$, for which $$a^s + b^t | a^n + b^{n+1}.$$ [i]Proposed by Oleksii Masalitin (Ukraine)[/i]

2007 Middle European Mathematical Olympiad, 3

A tetrahedron is called a [i]MEMO-tetrahedron[/i] if all six sidelengths are different positive integers where one of them is $ 2$ and one of them is $ 3$. Let $ l(T)$ be the sum of the sidelengths of the tetrahedron $ T$. (a) Find all positive integers $ n$ so that there exists a MEMO-Tetrahedron $ T$ with $ l(T)\equal{}n$. (b) How many pairwise non-congruent MEMO-tetrahedrons $ T$ satisfying $ l(T)\equal{}2007$ exist? Two tetrahedrons are said to be non-congruent if one cannot be obtained from the other by a composition of reflections in planes, translations and rotations. (It is not neccessary to prove that the tetrahedrons are not degenerate, i.e. that they have a positive volume).

2017 Dutch IMO TST, 3

Compute the product of all positive integers $n$ for which $3(n!+1)$ is divisible by $2n - 5$.

2012 Tournament of Towns, 2

Chip and Dale play the following game. Chip starts by splitting $222$ nuts between two piles, so Dale can see it. In response, Dale chooses some number $N$ from $1$ to $222$. Then Chip moves nuts from the piles he prepared to a new (third) pile until there will be exactly $N$ nuts in any one or two piles. When Chip accomplishes his task, Dale gets an exact amount of nuts that Chip moved. What is the maximal number of nuts that Dale can get for sure, no matter how Chip acts? (Naturally, Dale wants to get as many nuts as possible, while Chip wants to lose as little as possible).

2020 Baltic Way, 9

Each vertex $v$ and each edge $e$ of a graph $G$ are assigned numbers $f(v)\in\{1,2\}$ and $f(e)\in\{1,2,3\}$, respectively. Let $S(v)$ be the sum of numbers assigned to the edges incident to $v$ plus the number $f(v)$. We say that an assignment $f$ is [i]cool [/i]if $S(u) \ne S(v)$ for every pair $(u,v)$ of adjacent (i.e. connected by an edge) vertices in $G$. Prove that for every graph there exists a cool assignment.

MBMT Team Rounds, 2020.19

Tags:
In a regular hexagon $ABCDEF$ of side length $8$ and center $K$, points $W$ and $U$ are chosen on $\overline{AB}$ and $\overline{CD}$ respectively such that $\overline{KW} = 7$ and $\angle WKU = 120^{\circ}$. Find the area of pentagon $WBCUK$. [i]Proposed by Bradley Guo[/i]

2017 BMT Spring, 6

For how many numbers $n$ does $2017$ divided by $n$ have a remainder of either $1$ or $2$?

2016 NIMO Problems, 6

Tags:
Let $ABC$ be a triangle with $AB=20$, $AC=34$, and $BC=42$. Let $\omega_1$ and $\omega_2$ be the semicircles with diameters $\overline{AB}$ and $\overline{AC}$ erected outwards of $\triangle ABC$ and denote by $\ell$ the common external tangent to $\omega_1$ and $\omega_2$. The line through $A$ perpendicular to $\overline{BC}$ intersects $\ell$ at $X$ and $BC$ at $Y$. The length of $\overline{XY}$ can be written in the form $m+\sqrt n$ where $m$ and $n$ are positive integers. Find $100m+n$. [i]Proposed by David Altizio[/i]

2023 India IMO Training Camp, 1

Tags: geometry
Suppose an acute scalene triangle $ABC$ has incentre $I$ and incircle touching $BC$ at $D$. Let $Z$ be the antipode of $A$ in the circumcircle of $ABC$. Point $L$ is chosen on the internal angle bisector of $\angle BZC$ such that $AL = LI$. Let $M$ be the midpoint of arc $BZC$, and let $V$ be the midpoint of $ID$. Prove that $\angle IML = \angle DVM$

2014 Bosnia And Herzegovina - Regional Olympiad, 3

Find all integers $n$ such that $n^4-8n+15$ is product of two consecutive integers

2014 Hanoi Open Mathematics Competitions, 3

How many zeros are there in the last digits of the following number $P = 11\times12\times ...\times 88\times 89$ ? (A): $16$, (B): $17$, (C): $18$, (D): $19$, (E) None of the above.

Ukrainian From Tasks to Tasks - geometry, 2010.9

On the sides $AB, BC, CD$ and $DA$ of the parallelogram $ABCD$ marked the points $M, N, K$ and $F$. respectively. Is it possible to determine, using only compass, whether the area of ​​the quadrilateral $MNKF$ is equal to half the area of ​​the parallelogram $ABCD$?

2017 CMIMC Computer Science, 8

We have a collection of $1720$ balls, half of which are black and half of which are white, aligned in a straight line. Our task is to make the balls alternating in color along the line. The following greedy algorithm accomplishes that task for $2n$ balls: \begin{tabular}{l} 1: \textbf{FOR} $i$ \textbf{IN} $[2,3,\dots,2n]$ \\ 2: $\quad$ \textbf{IF} balls $i-1$ and $i$ have the same color: \\ 3: $\quad\quad$ $j\gets$ smallest index greater than $i$ for which balls $i-1$ and $j$ have different colors \\ 4: $\quad\quad$ swap balls $i$ and $j$ \end{tabular} Given a configuration $C$ of our $1720$ balls, let $\hat{\sigma}(C)$ denote the number of swaps the greedy algorithm takes, and let $\sigma(C)$ denote the minimum number of swaps actually necessary to perform the task. Find the maximum value over all configurations $C$ of $\hat{\sigma}(C)-\sigma(C)$.