This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2011 Silk Road, 2

Given an isosceles triangle $ABC$ with base $AB$. Point $K$ is taken on the extension of the side $AC$ (beyond the point $C$ ) so that $\angle KBC = \angle ABC$. Denote $S$ the intersection point of angle - bisectors of $\angle BKC$ and $\angle ACB$. Lines $AB$ and $KS$ intersect at point $L$, lines $BS$ and $CL$ intersect at point $M$ . Prove that line $KM$ passes through the midpoint of the segment $BC$.

1995 IMO Shortlist, 1

Let $ A,B,C,D$ be four distinct points on a line, in that order. The circles with diameters $ AC$ and $ BD$ intersect at $ X$ and $ Y$. The line $ XY$ meets $ BC$ at $ Z$. Let $ P$ be a point on the line $ XY$ other than $ Z$. The line $ CP$ intersects the circle with diameter $ AC$ at $ C$ and $ M$, and the line $ BP$ intersects the circle with diameter $ BD$ at $ B$ and $ N$. Prove that the lines $ AM,DN,XY$ are concurrent.

1987 IMO, 2

Let $n\ge3$ be an integer. Prove that there is a set of $n$ points in the plane such that the distance between any two points is irrational and each set of three points determines a non-degenerate triangle with rational area.

Maryland University HSMC part II, 2010

[b]p1.[/b] We say that six positive integers form a magic triangle if they are arranged in a triangular array as in the figure below in such a way that each number in the top two rows is equal to the sum of its two neighbors in the row directly below it. The triangle shown is magic because $4 = 1 + 3$, $5 = 3 + 2$, and $9 = 4 + 5$. $$9$$ $$4\,\,\,\,5$$ $$1\,\,\,\,3\,\,\,\,2$$ (a) Find a magic triangle such that the numbers at the three corners are $10$, $20$, and $2010$, with $2010$ at the top. (b) Find a magic triangle such that the numbers at the three corners are $20$, $201$, and $2010$, with $2010$ at the top, or prove that no such triangle exists. [b]p2.[/b] (a) The equalities $\frac12+\frac13+\frac16= 1$ and $\frac12+\frac13+\frac17+\frac{1}{42}= 1$ express $1$ as a sum of the reciprocals of three (respectively four) distinct positive integers. Find five positive integers $a < b < c <d < e$ such that $$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}= 1.$$ (b) Prove that for any integer $m \ge 3$, there exist $m$ positive integers $d_1 < d_2 <... < d_m$ such that $$\frac{1}{d_1}+\frac{1}{d_2}+ ... +\frac{1}{d_m}= 1.$$ [b]p3.[/b] Suppose that $P(x) = a_nx^n +... + a_1x + a_0$ is a polynomial of degree n with real coefficients. Say that the real number $b$ is a balance point of $P$ if for every pair of real numbers $a$ and $c$ such that $b$ is the average of $a$ and $c$, we have that $P(b)$ is the average of $P(a)$ and $P(c)$. Assume that $P$ has two distinct balance points. Prove that $n$ is at most $1$, i.e., that $P$ is a linear function. [b]p4.[/b] A roller coaster at an amusement park has a train consisting of $30$ cars, each seating two people next to each other. $60$ math students want to take as many rides as they can, but are told that there are two rules that cannot be broken. First, all $60$ students must ride each time, and second, no two students are ever allowed to sit next to each other more than once. What is the maximal number of roller coaster rides that these students can take? Justify your answer. [b]p5.[/b] Let $ABCD$ be a convex quadrilateral such that the lengths of all four sides and the two diagonals of $ABCD$ are rational numbers. If the two diagonals $AC$ and $BD$ intersect at a point $M$, prove that the length of $AM$ is also a rational number. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 Purple Comet Problems, 6

Tags:
The product of two positive numbers is equal to $50$ times their sum and $75$ times their difference. Find their sum.

2003 Flanders Junior Olympiad, 2

Tags: ratio , geometry
Through an internal point $O$ of $\Delta ABC$ one draws 3 lines, parallel to each of the sides, intersecting in the points shown on the picture. [img]https://cdn.artofproblemsolving.com/attachments/e/3/03d4d1bb61eda8b4a72ff84466d700de47c147.png[/img] Find the value of $\frac{|AF|}{|AB|}+\frac{|BE|}{|BC|}+\frac{|CN|}{|CA|}$.

2016 IMAR Test, 2

Given a positive integer $n$, does there exist a planar polygon and a point in its plane such that every line through that point meets the boundary of the polygon at exactly $2n$ points?

2005 National Olympiad First Round, 9

Let $ABC$ be a triangle with circumradius $1$. If the center of the circle passing through $A$, $C$, and the orthocenter of $\triangle ABC$ lies on the circumcircle of $\triangle ABC$, what is $|AC|$? $ \textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ \dfrac 32 \qquad\textbf{(D)}\ \sqrt 2 \qquad\textbf{(E)}\ \sqrt 3 $

2009 Baltic Way, 15

A unit square is cut into $m$ quadrilaterals $Q_1,\ldots ,Q_m$. For each $i=1,\ldots ,m$ let $S_i$ be the sum of the squares of the four sides of $Q_i$. Prove that \[S_1+\ldots +S_m\ge 4\]

2005 Tournament of Towns, 3

Originally, every square of $8 \times 8$ chessboard contains a rook. One by one, rooks which attack an odd number of others are removed. Find the maximal number of rooks that can be removed. (A rook attacks another rook if they are on the same row or column and there are no other rooks between them.) [i](5 points)[/i]

2021 South Africa National Olympiad, 4

Let $ABC$ be a triangle with $\angle ABC \neq 90^\circ$ and $AB$ its shortest side. Denote by $H$ the intersection of the altitudes of triangle $ABC$. Let $K$ be the circle through $A$ with centre $B$. Let $D$ be the other intersection of $K$ and $AC$. Let $K$ intersect the circumcircle of $BCD$ again at $E$. If $F$ is the intersection of $DE$ and $BH$, show that $BD$ is tangent to the circle through $D$, $F$, and $H$.

2013 North Korea Team Selection Test, 1

The incircle of a non-isosceles triangle $ABC$ with the center $I$ touches the sides $ BC, CA, AB$ at $ A_1 , B_1 , C_1 $ respectively. The line $AI$ meets the circumcircle of $ABC$ at $A_2 $. The line $B_1 C_1 $ meets the line $BC$ at $A_3 $ and the line $A_2 A_3 $ meets the circumcircle of $ABC$ at $A_4 (\ne A_2 ) $. Define $B_4 , C_4 $ similarly. Prove that the lines $ AA_4 , BB_4 , CC_4 $ are concurrent.

2019 CCA Math Bonanza, L2.2

Tags:
What is the largest positive integer $n$ for which there are no [i]positive[/i] integers $a,b$ such that $8a+11b=n$? [i]2019 CCA Math Bonanza Lightning Round #2.2[/i]

2015 China Second Round Olympiad, 1

Tags: inequalities
Let $a,b,c$ be nonnegative real numbers.Prove that$$\frac{(a-bc)^2+(b-ca)^2+(c-ab)^2}{(a-b)^2+(b-c)^2+(c-a)^2}\geq\frac{1}{2}.$$

MathLinks Contest 3rd, 1

Tags: algebra
Find all functions$ f, g : (0,\infty) \to (0,\infty)$ such that for all $x > 0$ we have the relations: $f(g(x)) = \frac{x}{xf(x) - 2}$ and $g(f(x)) = \frac{x}{xg(x) - 2}$ .

2023 BMT, Tie 3

Bessie the cow is hungry and wants to eat some oranges, which she has an infinite supply of. Bessie starts with a fullness level of $0$, and each orange that she eats increases her fullness level by $85$. She can also eat lemons, and each time she eats a lemon, her fullness level is halved, rounding down. What is the smallest number of lemons that Bessie should have in order to be able to attain every possible nonnegative integer fullness level?

2014 Costa Rica - Final Round, 2

Let $p_1,p_2, p_3$ be positive numbers such that $p_1 + p_2 + p_3 = 1$. If $a_1 <a_2 <a_3$ and $b_1 <b_2 <b_3$ prove that $$(a_1p_1 + a_2p_2 + a_3p_3) (b_1p_1 + b_2p_2 + b_3p_3)\le (a_1b_1p_1 + a_2b_2p_2 + a_3b_3p_3)$$

2023 CUBRMC, 10

Tags: geometry
Let triangle $ABC$ have side lengths$ AB = 19$, $BC = 180$, and $AC = 181$, and angle measure $\angle ABC = 90^o$. Let the midpoints of $AB$ and $BC$ be denoted by $M$ and $N$ respectively. The circle centered at $ M$ and passing through point $C$ intersects with the circle centered at the $N$ and passing through point $A$ at points $D$ and $E$. If $DE$ intersects $AC$ at point $P$, find min $(DP,EP)$.

2015 Princeton University Math Competition, A4/B6

Tags: geometry
Find the largest $r$ such that $4$ balls each of radius $r$ can be packed into a regular tetrahedron with side length $1$. In a packing, each ball lies outside every other ball, and every ball lies inside the boundaries of the tetrahedron. If $r$ can be expressed in the form $\frac{\sqrt{a}+b}{c}$ where $a, b, c$ are integers such that $\gcd(b, c) = 1$, what is $a + b + c$?

1950 Miklós Schweitzer, 10

Consider an arc of a planar curve such that the total curvature of the arc is less than $ \pi$. Suppose, further, that the curvature and its derivative with respect to the arc length exist at every point of the arc and the latter nowhere equals zero. Let the osculating circles belonging to the endpoints of the arc and one of these points be given. Determine the possible positions of the other endpoint.

1965 Miklós Schweitzer, 3

Let $ a,b_0,b_1,b_2,...,b_{n\minus{}1}$ be complex numbers, $ A$ a complex square matrix of order $ p$, and $ E$ the unit matrix of order $ p$. Assuming that the eigenvalues of $ A$ are given, determine the eigenvalues of the matrix \[ B\equal{}\begin{pmatrix} b_0E&b_1A&b_2A^2&\cdots&b_{n\minus{}1}A^{n\minus{}1} \\ ab_{n\minus{}1}A^{n\minus{}1}&b_0E&b_1A&\cdots&b_{n\minus{}2}A^{n\minus{}2}\\ ab_{n\minus{}2}A^{n\minus{}2}&ab_{n\minus{}1}A^{n\minus{}1}&b_0E&\cdots&b_{n\minus{}3}A^{n\minus{}3}\\ \vdots&\vdots&\vdots&\ddots&\vdots&\\ ab_1A&ab_2A^2&ab_3A^3&\cdots&b_0E \end{pmatrix}\quad\]

Kvant 2023, M2768

Let $n{}$ be a natural number. The pairwise distinct nonzero integers $a_1,a_2,\ldots,a_n$ have the property that the number \[(k+a_1)(k+a_2)\cdots(k+a_n)\]is divisible by $a_1a_2\cdots a_n$ for any integer $k{}.$ Find the largest possible value of $a_n.$ [i]Proposed by F. Petrov and K. Sukhov[/i]

2020 Indonesia MO, 3

The wording is just ever so slightly different, however the problem is identical. Problem 3. Determine all functions $f: \mathbb{N} \to \mathbb{N}$ such that $n^2 + f(n)f(m)$ is a multiple of $f(n) + m$ for all natural numbers $m, n$.

2024 Poland - Second Round, 3

Let $n \geq 2$ be a positive integer. There are $2n$ cities $M_1, M_2, \ldots, M_{2n}$ in the country of Mathlandia. Currently there roads only between $M_1$ and $M_2, M_3, \ldots, M_n$ and the king wants to build more roads so that it is possible to reach any city from every other city. The cost to build a road between $M_i$ and $M_j$ is $k_{i, j}>0$. Let $$K=\sum_{j=n+1}^{2n} k_{1,j}+\sum_{2 \leq i<j \leq 2n} k_{i, j}.$$Prove that the king can fulfill his plan at cost no more than $\frac{2K}{3n-1}$.

2005 Tournament of Towns, 4

Tags: counting
A $10 \times 12$ paper rectangle is folded along the grid lines several times, forming a thick $1 \times 1$ square. How many pieces of paper can one possibly get by cutting this square along the segment connecting (a) the midpoints of a pair of opposite sides; [i](2 points)[/i] (b) the midpoints of a pair of adjacent sides? [i](4 points)[/i]