This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1976 IMO Longlists, 47

Prove that $5^n$ has a block of $1976$ consecutive $0's$ in its decimal representation.

2008 Indonesia TST, 3

Let $\Gamma_1$ and $\Gamma_2$ be two circles that tangents each other at point $N$, with $\Gamma_2$ located inside $\Gamma_1$. Let $A, B, C$ be distinct points on $\Gamma_1$ such that $AB$ and $AC$ tangents $\Gamma_2$ at $D$ and $E$, respectively. Line $ND$ cuts $\Gamma_1$ again at $K$, and line $CK$ intersects line $DE$ at $I$. (i) Prove that $CK$ is the angle bisector of $\angle ACB$. (ii) Prove that $IECN$ and $IBDN$ are cyclic quadrilaterals.

2002 Rioplatense Mathematical Olympiad, Level 3, 2

Let $\lambda$ be a real number such that the inequality $0 <\sqrt {2002} - \frac {a} {b} <\frac {\lambda} {ab}$ holds for an infinite number of pairs $ (a, b)$ of positive integers. Prove that $\lambda \geq 5 $.

2019 Baltic Way, 18

Let $a,b$, and $c$ be odd positive integers such that $a$ is not a perfect square and $$a^2+a+1 = 3(b^2+b+1)(c^2+c+1).$$ Prove that at least one of the numbers $b^2+b+1$ and $c^2+c+1$ is composite.

1998 Belarusian National Olympiad, 6

Points $M$ and $N$ are marked on the straight line containing the side $AC$ of triangle $ABC$ so that $MA = AB$ and $NC = CB$ (the order of the points on the line: $M, A, C, N$). Prove that the center of the circle inscribed in triangle $ABC$ lies on the common chord of the circles circumscribed around triangles $MCB$ and $NAB$ .

2024 Brazil EGMO TST, 4

The infinite sequence \( a_1, a_2, \ldots \) is defined by \( a_1 = 1 \) and, for each \( n \geq 1 \), the number \( a_{n+1} \) is the smallest positive integer greater than \( a_n \) that has the following property: for each \( k \in \{1, 2, \ldots, n\} \), the number \( a_{n+1} + a_k \) is not a perfect square. Prove that, for all \( n \), it holds that \( a_n \leq (n - 1)^2 + 1 \).

2024-IMOC, A6

Given positive real $a,b,c$ satisfying \[\frac{1}{\sqrt{a+1}}+\frac{3}{\sqrt{b+3}}+\frac{3}{\sqrt{c+3}}=\frac72\] Prove that $abc\leq 3$.\\ I was asked to propose a inequality for the condition of $abc<3$ inequality since <3 looks like a heart shape, then I construct a equality and with the help of wolfram, I gave the birth of this bad-looking inequality, I’m glad to see any method besides calculus.

2017 IMO Shortlist, G7

Tags: incenter , geometry
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.

2015 NIMO Summer Contest, 6

Tags: combinatorics , set
Let $S_0 = \varnothing$ denote the empty set, and define $S_n = \{ S_0, S_1, \dots, S_{n-1} \}$ for every positive integer $n$. Find the number of elements in the set \[ (S_{10} \cap S_{20}) \cup (S_{30} \cap S_{40}). \] [i] Proposed by Evan Chen [/i]

2025 JBMO TST - Turkey, 6

Find the minimum value of \[\frac{x^3+1}{(y-1)(z+1)}+\frac{y^3+1}{(z-1)(x+1)}+\frac{z^3+1}{(x-1)(y+1)}\] where $x,y,z>1$ are reals.

2001 National Olympiad First Round, 24

How many real roots of the equation \[x^2 - 18[x]+77=0\] are not integer, where $[x]$ denotes the greatest integer not exceeding the real number $x$? $ \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None of the preceding} $

2023 Taiwan Mathematics Olympiad, 5

Tags: algebra
Let $m$ be a positive integer, and real numbers $a_1, a_2,\ldots , a_m$ satisfy \[\frac{1}{m}\sum_{i=1}^{m}a_i = 1,\] \[\frac{1}{m}\sum_{i=1}^{m}a_i ^2= 11,\] \[\frac{1}{m}\sum_{i=1}^{m}a_i ^3= 1,\] \[\frac{1}{m}\sum_{i=1}^{m}a_i ^4= 131.\] Prove that $m$ is a multiple of $7$. [i] Proposed by usjl[/i]

2017 India IMO Training Camp, 3

Tags: geometry
Let $B = (-1, 0)$ and $C = (1, 0)$ be fixed points on the coordinate plane. A nonempty, bounded subset $S$ of the plane is said to be [i]nice[/i] if $\text{(i)}$ there is a point $T$ in $S$ such that for every point $Q$ in $S$, the segment $TQ$ lies entirely in $S$; and $\text{(ii)}$ for any triangle $P_1P_2P_3$, there exists a unique point $A$ in $S$ and a permutation $\sigma$ of the indices $\{1, 2, 3\}$ for which triangles $ABC$ and $P_{\sigma(1)}P_{\sigma(2)}P_{\sigma(3)}$ are similar. Prove that there exist two distinct nice subsets $S$ and $S'$ of the set $\{(x, y) : x \geq 0, y \geq 0\}$ such that if $A \in S$ and $A' \in S'$ are the unique choices of points in $\text{(ii)}$, then the product $BA \cdot BA'$ is a constant independent of the triangle $P_1P_2P_3$.

2018 Sharygin Geometry Olympiad, 22

Tags: geometry
Six circles of unit radius lie in the plane so that the distance between the centers of any two of them is greater than $d$. What is the least value of $d$ such that there always exists a straight line which does not intersect any of the circles and separates the circles into two groups of three?

2020 BMT Fall, 11

Equilateral triangle $ABC$ has side length $2$. A semicircle is drawn with diameter $BC$ such that it lies outside the triangle, and minor arc $BC$ is drawn so that it is part of a circle centered at $A$. The area of the “lune” that is inside the semicircle but outside sector $ABC$ can be expressed in the form $\sqrt{p}-\frac{q\pi}{r}$, where $p, q$, and $ r$ are positive integers such that $q$ and $r$ are relatively prime. Compute $p + q + r$. [img]https://cdn.artofproblemsolving.com/attachments/7/7/f349a807583a83f93ba413bebf07e013265551.png[/img]

2019 Durer Math Competition Finals, 7

Find the smallest positive integer $n$ with the following property: if we write down all positive integers from $1$ to $10^n$ and add together the reciprocals of every non-zero digit written down, we obtain an integer.

2019 Philippine TST, 1

Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.

2019 Peru Cono Sur TST, P1

Find all a positive integers $a$ and $b$, such that $$\frac{a^b+b^a}{a^a-b^b}$$ is an integer

1998 Belarus Team Selection Test, 2

Tags: set , algebra
Find all finite sets $M \subset R$ containing at least two elements such that $(2a/3 -b^2) \in M$ for any two different elements $a,b \in M$.

KoMaL A Problems 2022/2023, A. 831

Tags: geometry
In triangle $ABC$ let $F$ denote the midpoint of side $BC$. Let the circle passing through point $A$ and tangent to side $BC$ at point $F$ intersect sides $AB$ and $AC$ at points $M$ and $N$, respectively. Let the line segments $CM$ and $BN$ intersect in point $X$. Let $P$ be the second point of intersection of the circumcircles of triangles $BMX$ and $CNX$. Prove that points $A, F$ and $P$ are collinear. Proposed by Imolay András, Budapest

2010 Greece National Olympiad, 1

Solve in the integers the diophantine equation $$x^4-6x^2+1 = 7 \cdot 2^y.$$

2005 China Girls Math Olympiad, 1

As shown in the following figure, point $ P$ lies on the circumcicle of triangle $ ABC.$ Lines $ AB$ and $ CP$ meet at $ E,$ and lines $ AC$ and $ BP$ meet at $ F.$ The perpendicular bisector of line segment $ AB$ meets line segment $ AC$ at $ K,$ and the perpendicular bisector of line segment $ AC$ meets line segment $ AB$ at $ J.$ Prove that \[ \left(\frac{CE}{BF} \right)^2 \equal{} \frac{AJ \cdot JE}{AK \cdot KF}.\]

2004 Alexandru Myller, 2

On a non-rhombus parallelogram $ ABCD, $ the vertex $ B $ is projected on $ AC $ in the point $ E. $ The perpendicular on $ BD $ thru $ E $ intersects the lines $ BC $ and $ AB $ in $ F $ and $ G, $ respectively. Show that $ EF=EG $ if and only if $ \angle ABC=90^{\circ } . $ [i]Mircea Becheanu[/i]

2017 Taiwan TST Round 2, 4

Find all integer $c\in\{0,1,...,2016\}$ such that the number of $f:\mathbb{Z}\rightarrow\{0,1,...,2016\}$ which satisfy the following condition is minimal:\\ (1) $f$ has periodic $2017$\\ (2) $f(f(x)+f(y)+1)-f(f(x)+f(y))\equiv c\pmod{2017}$\\ Proposed by William Chao

2002 Romania National Olympiad, 2

Find all real polynomials $f$ and $g$, such that: \[(x^2+x+1)\cdot f(x^2-x+1)=(x^2-x+1)\cdot g(x^2+x+1), \] for all $x\in\mathbb{R}$.