Found problems: 85335
2009 China Team Selection Test, 1
In convex pentagon $ ABCDE$, denote by
$ AD\cap BE = F,BE\cap CA = G,CA\cap DB = H,DB\cap EC = I,EC\cap AD = J; AI\cap BE = A',BJ%Error. "capCA" is a bad command.
= B',CF%Error. "capDB" is a bad command.
= C',DG\cap EC = D',EH\cap AD = E'.$
Prove that $ \frac {AB'}{B'C}\cdot\frac {CD'}{D'E}\cdot\frac {EA'}{A'B}\cdot\frac {BC'}{C'D}\cdot\frac {DE'}{E'A} = 1$.
1976 Putnam, 4
For a point $P$ on an ellipse, let $d$ be the distance from the center of the ellipse to the line tangent to the ellipse at $P.$ Prove that $(PF_1)(PF_2)d^2$ is constant as $P$ varies on the ellipse, where $PF_1$ and $PF_2$ are distances from $P$ to the foci $F_1$ and $F_2$ of the ellipse.
2015 Nordic, 1
Let ${ABC}$ be a triangle and ${\Gamma}$ the circle with diameter ${AB}$. The bisectors of ${\angle BAC}$ and ${\angle ABC}$ intersect ${\Gamma}$ (also) at ${D}$ and ${E}$, respectively. The incircle of ${ABC}$ meets ${BC}$ and ${AC}$ at ${F}$ and ${G}$, respectively. Prove that ${D, E, F}$ and ${G}$ are collinear.
1989 Austrian-Polish Competition, 6
A sequence $(a_n)_{n \in N}$ of squares of nonzero integers is such that for each $n$ the difference $a_{n+1} - a_n$ is a prime or the square of a prime. Show that all such sequences are finite and determine the longest sequence.
2016 Peru IMO TST, 11
Let $n> 2$ be an integer. A child has $n^2$ candies, which are distributed in $n$ boxes. An operation consists in choosing two boxes that together contain an even number of candies and redistribute the candy from those boxes so that both contain the same amount of candy. Determine all the values of $n$ for which the child, after some operations, can get each box containing $n$ candies, no matter which the initial distribution of candies is.
1983 IMO Longlists, 14
Let $\ell$ be tangent to the circle $k$ at $B$. Let $A$ be a point on $k$ and $P$ the foot of perpendicular from $A$ to $\ell$. Let $M$ be symmetric to $P$ with respect to $AB$. Find the set of all such points $M.$
2015 AMC 12/AHSME, 24
Rational numbers $a$ and $b$ are chosen at random among all rational numbers in the interval $[0,2)$ that can be written as fractions $\tfrac nd$ where $n$ and $d$ are integers with $1\leq d\leq 5$. What is the probability that \[(\cos(a\pi)+i\sin(b\pi))^4\] is a real number?
$\textbf{(A) }\dfrac3{50}\qquad\textbf{(B) }\dfrac4{25}\qquad\textbf{(C) }\dfrac{41}{200}\qquad\textbf{(D) }\dfrac6{25}\qquad\textbf{(E) }\dfrac{13}{50}$
2023 Belarusian National Olympiad, 11.1
On a set $G$ we are given an operation $*: G \times G \to G$, that for every pair $(x,y)$ of elements of $G$ gives back $x*y \in G$, and for every elements $x,y,z \in G$ the equation $(x*y)*z=x*(y*z)$ holds. $G$ is partitioned into three non-empty sets $A,B$ and $C$.
Can it be that for every three elements $a \in A, b \in B, c \in C$ we have $a*b \in C, b*c \in A, c*a \in B$
2018 Greece JBMO TST, 1
Let $a,b,c,d$ be positive real numbers such that $a^2+b^2+c^2+d^2=4$.
Prove that exist two of $a,b,c,d$ with sum less or equal to $2$.
1990 Federal Competition For Advanced Students, P2, 3
In a convex quadrilateral $ ABCD$, let $ E$ be the intersection point of the diagonals, and let $ F_1,F_2,$ and $ F$ be the areas of $ ABE,CDE,$ and $ ABCD,$ respectively. Prove that:
$ \sqrt {F_1}\plus{}\sqrt {F_2} \le \sqrt {F}.$
2020 Purple Comet Problems, 12
Let $a$ and $b$ be positive integers such that $(a^3 - a^2 + 1)(b^3 - b^2 + 2) = 2020$. Find $10a + b$.
2015 Princeton University Math Competition, A7
The lattice points $(i, j)$ for integers $0 \le i, j \le 3$ are each being painted orange or black. Suppose a coloring is good if for every set of integers $x_1, x_2, y_1, y_2$ such that $0 \le x_1 < x_2 \le 3$ and $0 \le y_1 < y_2 \le 3$, the points $(x_1, y_1),(x_1, y_2),(x_2, y_1),(x_2, y_2)$ are not all the same color. How many good colorings are possible?
1922 Eotvos Mathematical Competition, 1
Given four points $A,B,C,D$ in space, find a plane, $S$, equidistant from all four points and having $A$ and $C$ on one side, $B$ and $D$ on the other.
2009 Tuymaada Olympiad, 1
A magician asked a spectator to think of a three-digit number $ \overline{abc}$ and then to tell him the sum of numbers $ \overline{acb}$, $ \overline{bac}$, $ \overline{bca}$, $ \overline{cab}$, and $ \overline{cba}$. He claims that when he knows this sum he can determine the original number. Is that so?
2010 Contests, 3
For $ n\in\mathbb{N}$, determine the number of natural solutions $ (a,b)$ such that
\[ (4a\minus{}b)(4b\minus{}a)\equal{}2010^n\]
holds.
2016 Stars of Mathematics, 2
Let $ m,n\ge 2 $ and consider a rectangle formed by $ m\times n $ unit squares that are colored, either white, or either black. A [i]step[/i] is the action of selecting from it a rectangle of dimensions $ 1\times k, $ where $ k $ is an odd number smaller or equal to $ n, $ or a rectangle of dimensions $ l\times 1, $ where $ l $ is and odd number smaller than $ m, $ and coloring all the unit squares of this chosen rectangle with the color that appears the least in it.
[b]a)[/b] Show that, for any $ m,n\ge 5, $ there exists a succession of [i]steps[/i] that make the rectagle to be single-colored.
[b]b)[/b] What about $ m=n+1=5? $
2022 Puerto Rico Team Selection Test, 4
Let's construct a family $\{K_n\}$ of geometric figures following the pattern shown in pictures:
[center][img]https://cdn.artofproblemsolving.com/attachments/4/1/76d6cf2b7ec3bd69de7bf33e2a382885f744a0.png[/img][/center]
where each hexagon (like the starting one) is constructed by cutting the two corners tops of a square, in such a way that the two figures removed are identical isosceles triangles, and the three resulting upper sides have the same length.
Continuing like this, a pattern is produced with which we can build the figures $K_n$, for integer $n \ge 0$ . Then, we denote by $P_n$ and $A_n$ the perimeter and area of the figure $K_n$, respectively. If the side of square to build $K_0$ measures $x$:
(a) Calculate $P_0$ and $A_0$ (in terms of the length $x$).
(b) Find an explicit formula for $P_n$, and for $A_n$, in terms of $x$ and of $n$. Simplify your answers.
(c) If $P_{2022} = A_{2022}$, find the measure of the six sides of the figure $K_0$, in its simplest form.
2020 AMC 12/AHSME, 8
What is the median of the following list of $4040$ numbers$?$
$$1, 2, 3, ..., 2020, 1^2, 2^2, 3^2, ..., 2020^2$$
$\textbf{(A) } 1974.5 \qquad \textbf{(B) } 1975.5 \qquad \textbf{(C) } 1976.5 \qquad \textbf{(D) } 1977.5 \qquad \textbf{(E) } 1978.5$
2014 India Regional Mathematical Olympiad, 2
The roots of the equation
\[ x^3-3ax^2+bx+18c=0 \]
form a non-constant arithmetic progression and the roots of the equation
\[ x^3+bx^2+x-c^3=0 \]
form a non-constant geometric progression. Given that $a,b,c$ are real numbers, find all positive integral values $a$ and $b$.
2008 Denmark MO - Mohr Contest, 4
In triangle $ABC$ we have $AB = 2, AC = 6$ and $\angle A = 120^o$ . The bisector of angle $A$ intersects the side BC at the point $D$. Determine the length of $AD$. The answer must be given as a fraction with integer numerator and denominator.
2018 PUMaC Individual Finals A, 3
We say that the prime numbers $p_1,\dots,p_n$ construct the graph $G$ if we can assign to each vertex of $G$ a natural number whose prime divisors are among $p_1,\dots,p_n$ and there is an edge between two vertices in $G$ if and only if the numbers assigned to the two vertices have a common divisor greater than $1$. What is the minimal $n$ such that there exist prime numbers $p_1,\dots,p_n$ which construct any graph $G$ with $N$ vertices?
2022 IMO Shortlist, G6
Let $ABC$ be an acute triangle with altitude $\overline{AH}$, and let $P$ be a variable point such that the angle bisectors $k$ and $\ell$ of $\angle PBC$ and $\angle PCB$, respectively, meet on $\overline{AH}$. Let $k$ meet $\overline{AC}$ at $E$, $\ell$ meet $\overline{AB}$ at $F$, and $\overline{EF}$ meet $\overline{AH}$ at $Q$. Prove that as $P$ varies, line $PQ$ passes through a fixed point.
LMT Team Rounds 2021+, A2
The function $f(x)$ has the property that $f(x) = -\frac{1}{f(x-1)}.$ Given that $f(0)=-\frac{1}{21},$ find the value of $f(2021).$
[i]Proposed by Ada Tsui[/i]
2003 IMO Shortlist, 4
Let $x_1,\ldots, x_n$ and $y_1,\ldots, y_n$ be real numbers. Let $A = (a_{ij})_{1\leq i,j\leq n}$ be the matrix with entries \[a_{ij} = \begin{cases}1,&\text{if }x_i + y_j\geq 0;\\0,&\text{if }x_i + y_j < 0.\end{cases}\] Suppose that $B$ is an $n\times n$ matrix with entries $0$, $1$ such that the sum of the elements in each row and each column of $B$ is equal to the corresponding sum for the matrix $A$. Prove that $A=B$.
1960 Poland - Second Round, 5
There are three different points on the line $ A $, $ B $, $ C $ and a point $ S $ outside this line; perpendicularly drawn at points $ A $, $ B $, $ C $ to the lines $ SA $, $ SB $, $ SC $ intersect at points $ M $, $ N $, $ P $. Prove that the points $ M $, $ N $, $ P $, $ S $ lie on the circle