This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2022 Girls in Math at Yale, R1

[b]p1[/b] How many two-digit positive integers with distinct digits satisfy the conditions that 1) neither digit is $0$, and 2) the units digit is a multiple of the tens digit? [b]p2[/b] Mirabel has $47$ candies to pass out to a class with $n$ students, where $10\le n < 20$. After distributing the candy as evenly as possible, she has some candies left over. Find the smallest integer $k$ such that Mirabel could have had $k$ leftover candies. [b]p3[/b] Callie picks two distinct numbers from $\{1, 2, 3, 4, 5\}$ at random. The probability that the sum of the numbers she picked is greater than the sum of the numbers she didn’t pick is $p$. $p$ can be expressed as $\frac{a}{b}$ for positive integers $a, b$ with $gcd (a, b) = 1$. Find $a + b$.

1949-56 Chisinau City MO, 29

Let $M$ be an arbitrary point of a circle circumscribed around an acute-angled triangle $ABC$. Prove that the product of the distances from the point $M$ to the sides $AC$ and $BC$ is equal to the product of the distances from $M$ to the side $AB$ and to the tangent to the circumscribed circle at point $C$.

Kharkiv City MO Seniors - geometry, 2013.11.4

In the triangle $ABC$, the heights $AA_1$ and $BB_1$ are drawn. On the side $AB$, points $M$ and $K$ are chosen so that $B_1K\parallel BC$ and $A_1 M\parallel AC$. Prove that the angle $AA_1K$ is equal to the angle $BB_1M$.

2021 Swedish Mathematical Competition, 6

Find the largest positive integer that cannot be written in the form $a + bc$ for some positive integers $a, b, c$, satisfying $a < b < c$.

2023 District Olympiad, P2

Let $ABC$ be an equilateral triangle. On the small arc $AB{}$ of its circumcircle $\Omega$, consider the point $N{}$ such that the small arc $NB$ measures $30^\circ{}$. The perpendiculars from $N{}$ onto $AC$ and $AB$ intersect $\Omega$ again at $P{}$ and $Q{}$ respectively. Let $H_1,H_2$ and $H_3$ be the orthocenters of the triangles $NAB, QBC$ and $CAP$ respectively. [list=a] [*]Prove that the triangle $NPQ$ is equilateral. [*]Prove that the triangle $H_1H_2H_3$ is equilateral. [/list]

2021 Israel TST, 3

In an inscribed quadrilateral $ABCD$, we have $BC=CD$ but $AB\neq AD$. Points $I$ and $J$ are the incenters of triangles $ABC$ and $ACD$ respectively. Point $K$ was chosen on segment $AC$ so that $IK=JK$. Points $M$ and $N$ are the incenters of triangles $AIK$ and $AJK$. Prove that the perpendicular to $CD$ at $D$ and the perpendicular to $KI$ at $I$ intersect on the circumcircle of $MAN$.

2006 Cuba MO, 1

Each of the $n$ students in a class sent a card to each of his $m$ colleagues. Prove that if $2m + 1 > n$, then at least two students sent cards to each other.

1991 Arnold's Trivium, 55

Tags: function
Investigate topologically the Riemann surface of the function \[w=\arctan z\]

2018 CHKMO, 3

Let $k$ be a positive integer. Prove that there exists a positive integer $\ell$ with the following property: if $m$ and $n$ are positive integers relatively prime to $\ell$ such that $m^m\equiv n^n \pmod{\ell}$, then $m\equiv n \pmod k$.

2014 Singapore Senior Math Olympiad, 23

Tags:
Let $n$ be a positive integer, and let $x=\frac{\sqrt{n+2}-\sqrt{n}}{\sqrt{n+2}+\sqrt{n}}$ and $y=\frac{\sqrt{n+2}+\sqrt{n}}{\sqrt{n+2}-\sqrt{n}}$. It is given that $14x^2+26xy+14y^2=2014$. Find the value of $n$.

2004 Unirea, 2

Find the arithmetic sequences of $ 5 $ integers $ n_1,n_2,n_3,n_4,n_5 $ that verify $ 5|n_1,2|n_2,11|n_3,7|n_4,17|n_5. $

2007 France Team Selection Test, 3

Tags: geometry
Let $A,B,C,D$ be four distinct points on a circle such that the lines $(AC)$ and $(BD)$ intersect at $E$, the lines $(AD)$ and $(BC)$ intersect at $F$ and such that $(AB)$ and $(CD)$ are not parallel. Prove that $C,D,E,F$ are on the same circle if, and only if, $(EF)\bot(AB)$.

2012-2013 SDML (Middle School), 8

A unit square is cut into four pieces that can be arranged to make an isosceles triangle as shown below. What is the perimeter of the triangle? Express your answer in simplest radical form. [asy] filldraw((0, 3)--(-1, 3)--(-2, 2)--(-1, 1)--cycle,lightgrey); filldraw((0, 3)--(1, 3)--(2, 2)--(1, 1)--cycle,lightgrey); filldraw((0, 4)--(-1, 3)--(1, 3)--cycle,grey); draw((-1, 1)--(0,0)--(1, 1)); filldraw((4,1)--(3,2)--(2,0)--(3,0)--cycle,lightgrey); filldraw((4,1)--(5,2)--(6,0)--(5,0)--cycle,lightgrey); filldraw((4,1)--(3,0)--(5,0)--cycle,grey); draw((3,2)--(4,4)--(5,2)); [/asy]

2016 HMNT, 25-27

Tags: hmmt
25. Chris and Paul each rent a different room of a hotel from rooms $1 - 60$. However, the hotel manager mistakes them for one person and gives ”Chris Paul” a room with Chris’s and Paul’s room concatenated. For example, if Chris had $15$ and Paul had $9$, ”Chris Paul” has $159$. If there are $360$ rooms in the hotel, what is the probability that ”Chris Paul” has a valid room? 26. Find the number of ways to choose two nonempty subsets $X$ and $Y$ of $\{1, 2, \ldots , 2001\}$, such that $|Y| = 1001$ and the smallest element of $Y$ is equal to the largest element of $X$. 27. Let $r_1, r_2, r_3, r_4$ be the four roots of the polynomial $x^4 - 4x^3 + 8x^2 - 7x + 3$. Find the value of $$\frac{r_1^2}{r_2^2+r_3^2+r_4^2}+\frac{r_2^2}{r_1^2+r_3^2+r_4^2}+\frac{r_3^2}{r_1^2+r_2^2+r_4^2}+\frac{r_4^2}{r_1^2+r_2^2+r_3^2}$$

2021 China Girls Math Olympiad, 4

Call a sequence of positive integers $(a_n)_{n \ge 1}$ a "CGMO sequence" if $(a_n)_{n \ge 1}$ strictly increases, and for all integers $n \ge 2022$, $a_n$ is the smallest integer such that there exists a non-empty subset of $\{a_{1}, a_{2}, \cdots, a_{n-1} \}$ $A_n$ where $a_n \cdot \prod\limits_{a \in A_n} a$ is a perfect square. Proof: there exists $c_1, c_2 \in \mathbb{R}^{+}$ s.t. for any "CGMO sequence" $(a_n)_{n \ge 1}$ , there is a positive integer $N$ that satisfies any $n \ge N$, $c_1 \cdot n^2 \le a_n \le c_2 \cdot n^2$.

2019 CIIM, Problem 5

Let $\{k_1, k_2, \dots , k_m\}$ a set of $m$ integers. Show that there exists a matrix $m \times m$ with integers entries $A$ such that each of the matrices $A + k_jI, 1 \leq j \leq m$ are invertible and their entries have integer entries (here $I$ denotes the identity matrix).

LMT Guts Rounds, 2020 F1

Tags:
Find the remainder when $2020!$ is divided by $2020^2.$ [i]Proposed by Kevin Zhao[/i]

2014 Indonesia MO Shortlist, C3

Let $n$ be a natural number. Given a chessboard sized $m \times n$. The sides of the small squares of chessboard are not on the perimeter of the chessboard will be colored so that each small square has exactly two sides colored. Prove that a coloring like that is possible if and only if $m \cdot n$ is even.

2012 China Team Selection Test, 3

Let $a_1<a_2$ be two given integers. For any integer $n\ge 3$, let $a_n$ be the smallest integer which is larger than $a_{n-1}$ and can be uniquely represented as $a_i+a_j$, where $1\le i<j\le n-1$. Given that there are only a finite number of even numbers in $\{a_n\}$, prove that the sequence $\{a_{n+1}-a_{n}\}$ is eventually periodic, i.e. that there exist positive integers $T,N$ such that for all integers $n>N$, we have \[a_{T+n+1}-a_{T+n}=a_{n+1}-a_{n}.\]

2002 Germany Team Selection Test, 1

Determine the number of all numbers which are represented as $x^2+y^2$ with $x, y \in \{1, 2, 3, \ldots, 1000\}$ and which are divisible by 121.

2011 QEDMO 9th, 9

In a very long corridor there is an infinite number of cabinets, which start with $1,2,3,...$ numbered and initially all are closed. There is also a horde of QEDlers, whose number lies in set $A \subseteq \{1, 2,3,...\}$ . In ascending order, the QED people now cause chaos: the person with number $a \in A$ visits the cabinet with the numbers $a,2a,3a,...$ opening all of the closed ones and closes all open. Show that in the end the cabinet has never exactly the same numbers from $A$ open.

2012 Korea Junior Math Olympiad, 6

$p > 3$ is a prime number such that $p|2^{p-1} - 1$ and $p \nmid 2^x - 1$ for $x = 1, 2,...,p-2$. Let $p = 2k + 3$. Now we define sequence $\{a_n\}$ as $$a_i = a_{i+k} = 2^i \,\, (1 \le i \le k ), \,\,\,\, a_{j+2k} = a_ja_{j+k} \,\, (j \le 1)$$ Prove that there exist $2k$ consecutive terms of sequence $a_{x+1},a_{x+2},..., a_{x+2k}$ such that $a_{x+i } \not\equiv a_{x+j}$ (mod $p$) for all $1 \le i < j \le 2k$ .

2012 India National Olympiad, 1

Let $ABCD$ be a quadrilateral inscribed in a circle. Suppose $AB=\sqrt{2+\sqrt{2}}$ and $AB$ subtends $135$ degrees at center of circle . Find the maximum possible area of $ABCD$.

2019 India National OIympiad, 5

Tags: p5 , geometry
Let $AB$ be the diameter of a circle $\Gamma$ and let $C$ be a point on $\Gamma$ different from $A$ and $B$. Let $D$ be the foot of perpendicular from $C$ on to $AB$.Let $K$ be a point on the segment $CD$ such that $AC$ is equal to the semi perimeter of $ADK$.Show that the excircle of $ADK$ opposite $A$ is tangent to $\Gamma$.

2025 JBMO TST - Turkey, 8

Tags: combinatorics , real , arc
Pairwise distinct points $P_1,\dots,P_{1024}$, which lie on a circle, are marked by distinct reals $a_1,\dots,a_{1024}$. Let $P_i$ be $Q-$good for a $Q$ on the circle different than $P_1,\dots,P_{1024}$, if and only if $a_i$ is the greatest number on at least one of the two arcs $P_iQ$. Let the score of $Q$ be the number of $Q-$good points on the circle. Determine the greatest $k$ such that regardless of the values of $a_1,\dots,a_{1024}$, there exists a point $Q$ with score at least $k$.