This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1999 Slovenia National Olympiad, Problem 4

Tags: puzzle
On a mountain, three shepherds cyclically alternate shearing the same herd of sheep. The shepherds agreed to obey the following rules: (i) Every day a sheep can be shorn* on one side only; (ii) Every day at least one sheep must be shorn; (iii) No two days the same group of sheep can be shorn. The shepherd who first breaks the agreement will have to accompany the herd in the valley next fall. Can anyone of the shepherds shear the sheep in such a way to make sure that he will avoid this punishment? *shorn is the past tense of shear

1955 AMC 12/AHSME, 26

Tags:
Mr. A owns a house worth $ \$10000$. He sells it to Mr. B at $ 10 \%$ profit. Mr. B sells the house back to Mr. A at a $ 10 \%$ loss. Then: $ \textbf{(A)}\ \text{Mr. A comes out even} \qquad \textbf{(B)}\ \text{Mr. A makes }\$100 \qquad \textbf{(C)}\ \text{Mr. A makes }\$1000 \\ \textbf{(D)}\ \text{Mr. B loses }\$100 \qquad \textbf{(E)}\ \text{none of the above is correct}$

2018 Harvard-MIT Mathematics Tournament, 3

Tags: geometry
A square in the [i]xy[/i]-plane has area [i]A[/i], and three of its vertices have [i]x[/i]-coordinates $2,0,$ and $18$ in some order. Find the sum of all possible values of [i]A[/i].

2004 District Olympiad, 2

Find the possible coordinates of the vertices of a triangle of which we know that the coordinates of its orthocenter are $ (-3,10), $ those of its circumcenter is $ (-2,-3), $ and those of the midpoint of some side is $ (1,3). $

2012 Hanoi Open Mathematics Competitions, 5

Tags:
[b]Q5.[/b] How many different 4-digit even integers can be form from the elements of the set $\{ 1,2,3,4,5 \}.$ \[(A) \; 4; \qquad (B) \; 5; \qquad (C ) \; 8; \qquad (D) \; 9; \qquad (E) \; \text{None of the above.}\]

2018 Singapore MO Open, 1

Consider a regular cube with side length $2$. Let $A$ and $B$ be $2$ vertices that are furthest apart. Construct a sequence of points on the surface of the cube $A_1$, $A_2$, $\ldots$, $A_k$ so that $A_1=A$, $A_k=B$ and for any $i = 1,\ldots, k-1$, the distance from $A_i$ to $A_{i+1}$ is $3$. Find the minimum value of $k$.

2022 Belarusian National Olympiad, 11.3

$2021$ points are marked on a circle. $2021$ segments with marked endpoints are drawn. After that one counts the number of different points where some $2$ drawn segments intersect(endpoints of segments do [b]not[/b] count as intersections) Find the maximum number one can get.

2022 APMO, 3

Find all positive integers $k<202$ for which there exist a positive integers $n$ such that $$\bigg {\{}\frac{n}{202}\bigg {\}}+\bigg {\{}\frac{2n}{202}\bigg {\}}+\cdots +\bigg {\{}\frac{kn}{202}\bigg {\}}=\frac{k}{2}$$

1998 Gauss, 12

Tags: gauss
Steve plants ten trees every three minutes. If he continues planting at the same rate, how long will it take him to plant 2500 trees? $\textbf{(A)}\ 1~1/4 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 12~1/2$

2017 Austria Beginners' Competition, 3

. Anthony denotes in sequence all positive integers which are divisible by $2$. Bertha denotes in sequence all positive integers which are divisible by $3$. Claire denotes in sequence all positive integers which are divisible by $4$. Orderly Dora denotes all numbers written by the other three. Thereby she puts them in order by size and does not repeat a number. What is the $2017th$ number in her list? [i]¨Proposed by Richard Henner[/i]

2014 Contests, 2

Find all integers $n$, $n>1$, with the following property: for all $k$, $0\le k < n$, there exists a multiple of $n$ whose digits sum leaves a remainder of $k$ when divided by $n$.

Cono Sur Shortlist - geometry, 2005.G3.4

Let $ABC$ be a isosceles triangle, with $AB=AC$. A line $r$ that pass through the incenter $I$ of $ABC$ touches the sides $AB$ and $AC$ at the points $D$ and $E$, respectively. Let $F$ and $G$ be points on $BC$ such that $BF=CE$ and $CG=BD$. Show that the angle $\angle FIG$ is constant when we vary the line $r$.

Indonesia Regional MO OSP SMA - geometry, 2017.3

Given triangle $ABC$, the three altitudes intersect at point $H$. Determine all points $X$ on the side $BC$ so that the symmetric of $H$ wrt point $X$ lies on the circumcircle of triangle $ABC$.

2020 Online Math Open Problems, 2

Tags:
For any positive integer $x$, let $f(x)=x^x$. Suppose that $n$ is a positive integer such that there exists a positive integer $m$ with $m \neq 1$ such that $f(f(f(m)))=m^{m^{n+2020}}$. Compute the smallest possible value of $n$. [i]Proposed by Luke Robitaille[/i]

2014 CHMMC (Fall), 1

Suppose we have a hexagonal grid in the shape of a hexagon of side length $4$ as shown at left. Define a “chunk” to be four tiles, two of which are adjacent to the other three, and the other two of which are adjacent to just two of the others. The three possible rotations of these are shown at right. [img]https://cdn.artofproblemsolving.com/attachments/a/7/147d8aa2c149918ab855db1e945d389433446a.png[/img] In how many ways can we choose a chunk from the grid?

2009 CentroAmerican, 5

Given an acute and scalene triangle $ ABC$, let $ H$ be its orthocenter, $ O$ its circumcenter, $ E$ and $ F$ the feet of the altitudes drawn from $ B$ and $ C$, respectively. Line $ AO$ intersects the circumcircle of the triangle again at point $ G$ and segments $ FE$ and $ BC$ at points $ X$ and $ Y$ respectively. Let $ Z$ be the point of intersection of line $ AH$ and the tangent line to the circumcircle at $ G$. Prove that $ HX$ is parallel to $ YZ$.

2024 Olimphíada, 1

Find all pairs of positive integers $(m,n)$ such that $$lcm(1,2,\dots,n)=m!$$ where $lcm(1,2,\dots,n)$ is the smallest positive integer multiple of all $1,2,\dots n-1$ and $n$.

2005 Hong kong National Olympiad, 2

Suppose there are $4n$ line segments of unit length inside a circle of radius $n$. Furthermore, a straight line $L$ is given. Prove that there exists a straight line $L'$ that is either parallel or perpendicular to $L$ and that $L'$ cuts at least two of the given line segments.

1965 AMC 12/AHSME, 40

Let $ n$ be the number of integer values of $ x$ such that $ P \equal{} x^4 \plus{} 6x^3 \plus{} 11x^2 \plus{} 3x \plus{} 31$ is the square of an integer. Then $ n$ is: $ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ 0$

1958 February Putnam, A1

Tags: root , polynomial
If $a_0 , a_1 ,\ldots, a_n$ are real number satisfying $$ \frac{a_0 }{1} + \frac{a_1 }{2} + \ldots + \frac{a_n }{n+1}=0,$$ show that the equation $a_n x^n + \ldots +a_1 x+a_0 =0$ has at least one real root.

2021 Estonia Team Selection Test, 3

For any odd prime $p$ and any integer $n,$ let $d_p (n) \in \{ 0,1, \dots, p-1 \}$ denote the remainder when $n$ is divided by $p.$ We say that $(a_0, a_1, a_2, \dots)$ is a [i]p-sequence[/i], if $a_0$ is a positive integer coprime to $p,$ and $a_{n+1} =a_n + d_p (a_n)$ for $n \geqslant 0.$ (a) Do there exist infinitely many primes $p$ for which there exist $p$-sequences $(a_0, a_1, a_2, \dots)$ and $(b_0, b_1, b_2, \dots)$ such that $a_n >b_n$ for infinitely many $n,$ and $b_n > a_n$ for infinitely many $n?$ (b) Do there exist infinitely many primes $p$ for which there exist $p$-sequences $(a_0, a_1, a_2, \dots)$ and $(b_0, b_1, b_2, \dots)$ such that $a_0 <b_0,$ but $a_n >b_n$ for all $n \geqslant 1?$ [I]United Kingdom[/i]

2017 Kyiv Mathematical Festival, 3

Tags: circles , geometry
A point $C$ is marked on a chord $AB$ of a circle $\omega.$ Let $D$ be the midpoint of $AC,$ and $O$ be the center of the circle $\omega.$ The circumcircle of the triangle $BOD$ intersects the circle $\omega$ again at point $E$ and the straight line $OC$ again at point $F.$ Prove that the circumcircle of the triangle $CEF$ touches $AB.$

2015 Junior Balkan Team Selection Tests - Romania, 4

The vertices of a regular $n$-gon are initially marked with one of the signs $+$ or $-$ . A [i]move[/i] consists in choosing three consecutive vertices and changing the signs from the vertices , from $+$ to $-$ and from $-$ to $+$. [b]a)[/b] Prove that if $n=2015$ then for any initial configuration of signs , there exists a sequence of [i]moves[/i] such that we'll arrive at a configuration with only $+$ signs. [b]b)[/b] Prove that if $n=2016$ , then there exists an initial configuration of signs such that no matter how we make the [i]moves[/i] we'll never arrive at a configuration with only $+$ signs.

1993 IMO Shortlist, 8

Let $c_1, \ldots, c_n \in \mathbb{R}$ with $n \geq 2$ such that \[ 0 \leq \sum^n_{i=1} c_i \leq n. \] Show that we can find integers $k_1, \ldots, k_n$ such that \[ \sum^n_{i=1} k_i = 0 \] and \[ 1-n \leq c_i + n \cdot k_i \leq n \] for every $i = 1, \ldots, n.$ [hide="Another formulation:"] Let $x_1, \ldots, x_n,$ with $n \geq 2$ be real numbers such that \[ |x_1 + \ldots + x_n| \leq n. \] Show that there exist integers $k_1, \ldots, k_n$ such that \[ |k_1 + \ldots + k_n| = 0. \] and \[ |x_i + 2 \cdot n \cdot k_i| \leq 2 \cdot n -1 \] for every $i = 1, \ldots, n.$ In order to prove this, denote $c_i = \frac{1+x_i}{2}$ for $i = 1, \ldots, n,$ etc. [/hide]

2022 Romania National Olympiad, P3

Determine all functions $f:\mathbb{R}\to\mathbb{R}$ which are differentiable in $0$ and satisfy the following inequality for all real numbers $x,y$ \[f(x+y)+f(xy)\geq f(x)+f(y).\][i]Dan Ștefan Marinescu and Mihai Piticari[/i]