This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2010 Contests, 1

Tags:
At Euclid High School, the mathematics teachers are Mrs. Germain, Mr. Newton, and Mrs. Young. There are $11$ students in Mrs. Germain's class, 8 in Mr. Newton, and $9$ in Mrs. Young's class are taking the AMC $8$ this year. How many mathematics students at Euclid High School are taking the contest? $ \textbf{(A)}\ 26 \qquad\textbf{(B)}\ 27\qquad\textbf{(C)}\ 28\qquad\textbf{(D)}\ 29\qquad\textbf{(E)}\ 30 $

2017 MIG, 6

Tags:
Thomas is to read $225$ pages of a book over the summer. He decides to read one page the first day, three pages the second day, five pages the third day, and so on, each day reading two more pages than the previous. How many days will it take Thomas to finish reading the book? $\textbf{(A) } 11\qquad\textbf{(B) } 12\qquad\textbf{(C) } 13\qquad\textbf{(D) } 14\qquad\textbf{(E) } 15$

2021 Thailand TSTST, 1

Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$. Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.

2020 March Advanced Contest, 3

A [i]simple polygon[/i] is a polygon whose perimeter does not self-intersect. Suppose a simple polygon $\mathcal P$ can be tiled with a finite number of parallelograms. Prove that regardless of the tiling, the sum of the areas of all rectangles in the tiling is fixed.\\ [i]Note:[/i] Points will be awarded depending on the generality of the polygons for which the result is proven.

2007 India Regional Mathematical Olympiad, 2

Let $ a, b, c$ be three natural numbers such that $ a < b < c$ and $ gcd (c \minus{} a, c \minus{} b) \equal{} 1$. Suppose there exists an integer $ d$ such that $ a \plus{} d, b \plus{} d, c \plus{} d$ form the sides of a right-angled triangle. Prove that there exist integers, $ l,m$ such that $ c \plus{} d \equal{} l^{2} \plus{} m^{2} .$ [b][Weightage 17/100][/b]

1997 Estonia Team Selection Test, 3

It is known that for every integer $n > 1$ there is a prime number among the numbers $n+1,n+2,...,2n-1.$ Determine all positive integers $n$ with the following property: Every integer $m > 1$ less than $n$ and coprime to $n$ is prime.

2012 CIIM, Problem 3

Tags:
Let $a,b,c,$ the lengths of the sides of a triangle. Prove that \[\sqrt{\frac{(3a+b)(3b+a)}{(2a+c)(2b+c)}} + \sqrt{\frac{(3b+c)(3c+b)}{(2b+a)(2c+a)}} + \sqrt{\frac{(3c+a)(3a+c)}{(2c+b)(2a+b)}} \geq 4.\]

1978 Vietnam National Olympiad, 5

A river has a right-angle bend. Except at the bend, its banks are parallel lines of distance $a$ apart. At the bend the river forms a square with the river flowing in across one side and out across an adjacent side. What is the longest boat of length $c$ and negligible width which can pass through the bend?

2022 Rioplatense Mathematical Olympiad, 2

Let $m,n\geq 2$. One needs to cover the table $m \times n$ using only the following tiles: Tile 1 - A square $2 \times 2$. Tile 2 - A L-shaped tile with five cells, in other words, the square $3 \times 3$ [b]without[/b] the upper right square $2 \times 2$. Each tile 1 covers exactly $4$ cells and each tile 2 covers exactly $5$ cells. Rotation is allowed. Determine all pairs $(m,n)$, such that the covering is possible.

1971 Putnam, A5

Tags:
A game of solitaire is played as follows. After each play, according to the outcome, the player receives either $a$ or $b$ points ($a$ and $b$ are positive integers with $a$ greater than $b$), and his score accumulates from play to play. It has been noticed that there are thirty-five non-attainable scores and that one of these is $58$. Find $a$ and $b$.

2005 Polish MO Finals, 2

The points $A, B, C, D$ lie in this order on a circle $o$. The point $S$ lies inside $o$ and has properties $\angle SAD=\angle SCB$ and $\angle SDA= \angle SBC$. Line which in which angle bisector of $\angle ASB$ in included cut the circle in points $P$ and $Q$. Prove $PS =QS$.

2017 South Africa National Olympiad, 5

Let $ABC$ be a triangle with circumcircle $\Gamma$. Let $D$ be a point on segment $BC$ such that $\angle BAD = \angle DAC$, and let $M$ and $N$ be points on segments $BD$ and $CD$, respectively, such that $\angle MAD = \angle DAN$. Let $S, P$ and $Q$ (all different from $A$) be the intersections of the rays $AD$, $AM$ and $AN$ with $\Gamma$, respectively. Show that the intersection of $SM$ and $QD$ lies on $\Gamma$.

2024 AMC 8 -, 12

Tags:
Rohan keeps a total of 90 guppies in 4 fish tanks. There is 1 more guppy in the 2nd tank than the 1st tank. There are 2 more guppies the the 3rd tank than the 2nd tank. There are 3 more guppies in the 4th tank than the 3rd tank. How many guppies are in the 4th tank? $\textbf{(A) } 20\qquad\textbf{(B) } 21\qquad\textbf{(C) } 23\qquad\textbf{(D) } 24\qquad\textbf{(E) } 26$

2020 AIME Problems, 5

Tags:
For each positive integer $n$, let $f(n)$ be the sum of the digits in the base-four representation of $n$ and let $g(n)$ be the sum of the digits in the base-eight representation of $f(n)$. For example, $f(2020) = f(133210_\text{four}) = 10 = 12_\text{eight}$, and $g(2020) = \text{the digit sum of } 12_\text{eight} = 3$. Let $N$ be the least value of $n$ such that the base-sixteen representation of $g(n)$ cannot be expressed using only the digits $0$ through $9.$ Find the remainder when $N$ is divided by $1000.$

2023 Korea National Olympiad, 8

For a positive integer $n$, if $n$ is a product of two different primes and $n \equiv 2 \pmod 3$, then $n$ is called "special number." For example, $14, 26, 35, 38$ is only special numbers among positive integers $1$ to $50$. Prove that for any finite set $S$ with special numbers, there exist two sets $A, B$ such that [list] [*] $A \cap B = \emptyset, A \cup B = S$ [*] $||A| - |B|| \leq 1$ [*] For all primes $p$, the difference between number of elements in $A$ which is multiple of $p$ and number of elements in $B$ which is multiple of $p$ is less than or equal to $1$. [/list]

2015 Israel National Olympiad, 2

A triangle is given whose altitudes' lengths are $\frac{1}{5},\frac{1}{5},\frac{1}{8}$. Evaluate the triangle's area.

2021 AMC 10 Spring, 23

Tags: prob
Frieda the frog begins a sequence of hops on a $3 \times 3$ grid of squares, moving one square on each hop and choosing at random the direction of each hop up, down, left, or right. She does not hop diagonally. When the direction of a hop would take Frieda off the grid, she "wraps around'' and jumps to the opposite edge. For example if Frieda begins in the center square and makes two hops "up'', the first hop would place her in the top row middle square, and the second hop would cause Frieda to jump to the opposite edge, landing in the bottom row middle square. Suppose Frieda starts from the center square, makes at most four hops at random, and stops hopping if she lands on a corner square. What is the probability that she reaches a corner square on one of the four hops? $\textbf{(A) }\frac{9}{16}\qquad\textbf{(B) }\frac{5}{8}\qquad\textbf{(C) }\frac{3}{4}\qquad\textbf{(D) }\frac{25}{32}\qquad\textbf{(E) }\frac{13}{16}$

2008 Harvard-MIT Mathematics Tournament, 4

Positive real numbers $ x$, $ y$ satisfy the equations $ x^2 \plus{} y^2 \equal{} 1$ and $ x^4 \plus{} y^4 \equal{} \frac {17}{18}$. Find $ xy$.

1991 Arnold's Trivium, 1

Sketch the graph of the derivative and the graph of the integral of a function given by a free-hand graph.

2018 Korea Winter Program Practice Test, 1

Let $\Delta ABC$ be a triangle with circumcenter $O$ and circumcircle $w$. Let $S$ be the center of the circle which is tangent with $AB$, $AC$, and $w$ (in the inside), and let the circle meet $w$ at point $K$. Let the circle with diameter $AS$ meet $w$ at $T$. If $M$ is the midpoint of $BC$, show that $K,T,M,O$ are concyclic.

2019 Bosnia and Herzegovina EGMO TST, 2

Let $1 = d_1 < d_2 < ...< d_k = n$ be all natural divisors of the natural number $n$. Find all possible values ​​of the number $k$ if $n=d_2d_3 + d_2d_5+d_3d_5$.

2020 LMT Fall, A23

Tags:
There are $5$ people left in a game of Among Us, $4$ of whom are crewmates and the last is the impostor. None of the crewmates know who the impostor is. The person with the most votes is ejected, unless there is a tie in which case no one is ejected. Each of the $5$ remaining players randomly votes for someone other than themselves. The probability the impostor is ejected can be expressed as $\frac{m}{n}$. Find $m+n$. [i]Proposed by Sammy Charney[/i]

2014 Online Math Open Problems, 11

Let $X$ be a point inside convex quadrilateral $ABCD$ with $\angle AXB+\angle CXD=180^{\circ}$. If $AX=14$, $BX=11$, $CX=5$, $DX=10$, and $AB=CD$, find the sum of the areas of $\triangle AXB$ and $\triangle CXD$. [i]Proposed by Michael Kural[/i]

2015 Saudi Arabia IMO TST, 3

Find the number of binary sequences $S$ of length $2015$ such that for any two segments $I_1, I_2$ of $S$ of the same length, we have • The sum of digits of $I_1$ differs from the sum of digits of $I_2$ by at most $1$, • If $I_1$ begins on the left end of S then the sum of digits of $I_1$ is not greater than the sum of digits of $I_2$, • If $I_2$ ends on the right end of S then the sum of digits of $I_2$ is not less than the sum of digits of $I_1$. Lê Anh Vinh

1999 USAMTS Problems, 1

Tags:
Define the unique $9$-digit integer $M$ that has the following properties: (1) its digits are all distinct and nonzero; and (2) for every positive integer $m=2,3,4,...,9$, the integer formed by the leftmost $m$ digits of $M$ is divisible by $m$.