This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2004 Tournament Of Towns, 1

Segments $AB, BC$ and $CD$ of the broken line $ABCD$ are equal and are tangent to a circle with centre at the point $O$. Prove that the point of contact of this circle with $BC$, the point $O$ and the intersection point of $AC$ and $BD$ are collinear.

1989 Tournament Of Towns, (239) 3

Tags: geometry , area
Choose a point $A$ inside a circle of radius $R$. Construct a pair of perpendicular lines through $A$. Then rotate these lines through the same angle $V$ about $A$. The figure formed inside the circle, as the lines move from their initial to their final position, is in the form of a cross with its centre at $A$. Find the area of this cross. (Problem from Latvia)

2016 Chile National Olympiad, 3

The [i]giraffe[/i] is a chess piece that moves $4$ squares in one direction and then a box in a perpendicular direction. What is the smallest value of $n$ such that the giraffe that starts from a corner on an $n \times n$ board can visit all the squares of said board?

2021 Princeton University Math Competition, B1

Tags: geometry
Parallelogram $ABCD$ is given such that $\angle ABC$ equals $30^o$ . Let $X$ be the foot of the perpendicular from $A$ onto $BC$, and $Y$ the foot of the perpendicular from $C$ to $AB$. If $AX = 20$ and $CY = 22$, find the area of the parallelogram.

2013 Princeton University Math Competition, 4

Tags: rotation , geometry
Draw an equilateral triangle with center $O$. Rotate the equilateral triangle $30^\circ, 60^\circ, 90^\circ$ with respect to $O$ so there would be four congruent equilateral triangles on each other. Look at the diagram. If the smallest triangle has area $1$, the area of the original equilateral triangle could be expressed as $p+q\sqrt r$ where $p,q,r$ are positive integers and $r$ is not divisible by a square greater than $1$. Find $p+q+r$.

2011 Math Prize For Girls Problems, 4

Tags: logarithm
If $x > 10$, what is the greatest possible value of the expression \[ {( \log x )}^{\log \log \log x} - {(\log \log x)}^{\log \log x} ? \] All the logarithms are base 10.

2009 Harvard-MIT Mathematics Tournament, 3

Compute $e^A$ where $A$ is defined as \[\int_{3/4}^{4/3}\dfrac{2x^2+x+1}{x^3+x^2+x+1}dx.\]

2023 Taiwan Mathematics Olympiad, 4

Tags:
Let $n$ and $k$ be positive integers. Let $A$ be a set of $2n$ distinct points on the Euclidean plane such that no three points in $A$ are collinear. Some pairs of points in $A$ are linked with a segment so that there are $n^2 + k$ distinct segments on the plane. Prove that there exists at least $\frac{4}{3}k^{3/2}$ distinct triangles on the plane with vertices in $A$ and sides as the aforementioned segments. [i] Proposed by Ho-Chien Chen[/i]

2022 Francophone Mathematical Olympiad, 1

find all the integer $n\geq1$ such that $\lfloor\sqrt{n}\rfloor \mid n$

2016 Taiwan TST Round 2, 1

Let $a$ and $b$ be positive integers such that $a! + b!$ divides $a!b!$. Prove that $3a \ge 2b + 2$.

2021 German National Olympiad, 1

Determine all real numbers $a,b,c$ and $d$ with the following property: The numbers $a$ and $b$ are distinct roots of $2x^2-3cx+8d$ and the numbers $c$ and $d$ are distinct roots of $2x^2-3ax+8b$.

2009 Belarus Team Selection Test, 4

Given a graph with $n$ ($n\ge 4$) vertices . It is known that for any two vertices $A$ and $B$ there exists a vertex which is connected by edges both with $A$ and $B$. Find the smallest possible numbers of edges in the graph. E. Barabanov

Kyiv City MO 1984-93 - geometry, 1988.9.1

Each side of a convex quadrilateral is less than $20$ cm. Prove that you can specify the vertex of the quadrilateral, the distance from which to any point $Q$ inside the quadrilateral is less than $15$ cm.

1991 Arnold's Trivium, 40

Tags: vector
Find the parallel displacement of a vector pointing north at Leningrad (latitude $60^{\circ}$) from west to east along a closed parallel.

1980 Bundeswettbewerb Mathematik, 1

Six free cells are given in a row. Players $A$ and $B$ alternately write digits from $0$ to $9$ in empty cells, with $A$ starting. When all the cells are filled, one considers the obtained six-digit number $z$. Player $B$ wins if $z$ is divisible by a given natural number $n$, and loses otherwise. For which values of $n$ not exceeding $20$ can $B$ win independently of his opponent’s moves?

1983 Putnam, A4

Tags: algebra
Let $k$ be a positive integer and let $m=6k-1$. Let $$S(m)=\sum_{j=1}^{2k-1}(-1)^{j+1}\binom m{3j-1}.$$Prove that $S(m)$ is never zero.

1998 Junior Balkan MO, 2

Tags: geometry
Let $ABCDE$ be a convex pentagon such that $AB=AE=CD=1$, $\angle ABC=\angle DEA=90^\circ$ and $BC+DE=1$. Compute the area of the pentagon. [i]Greece[/i]

2012 Purple Comet Problems, 15

Tags: function
Let $N$ be a positive integer whose digits add up to $23$. What is the greatest possible product the digits of $N$ can have?

2023 LMT Spring, 10

Positive integers $a$, $b$, and $c$ satisfy $a^2 +b^2 = c^3 -1$ where $c \le 40$. Find the sum of all distinct possible values of $c$.

1998 Brazil National Olympiad, 3

Two mathematicians, lost in Berlin, arrived on the corner of Barbarossa street with Martin Luther street and need to arrive on the corner of Meininger street with Martin Luther street. Unfortunately they don't know which direction to go along Martin Luther Street to reach Meininger Street nor how far it is, so they must go fowards and backwards along Martin Luther street until they arrive on the desired corner. What is the smallest value for a positive integer $k$ so that they can be sure that if there are $N$ blocks between Barbarossa street and Meininger street then they can arrive at their destination by walking no more than $kN$ blocks (no matter what $N$ turns out to be)?

1998 AMC 8, 11

Tags:
Harry has $3$ sisters and $5$ brothers. His sister Harriet has $X$ sisters and $Y$ brothers. What is the product of $X$ and $Y$? $ \text{(A)}\ 8\qquad\text{(B)}\ 10\qquad\text{(C)}\ 12\qquad\text{(D)}\ 15\qquad\text{(E)}\ 18 $

2005 Iran MO (3rd Round), 4

Suppose we have some proteins that each protein is a sequence of 7 "AMINO-ACIDS" $A,\ B,\ C,\ H,\ F,\ N$. For example $AFHNNNHAFFC$ is a protein. There are some steps that in each step an amino-acid will change to another one. For example with the step $NA\rightarrow N$ the protein $BANANA$ will cahnge to $BANNA$("in Persian means workman"). We have a set of allowed steps that each protein can change with these steps. For example with the set of steps: $\\ 1)\ AA\longrightarrow A\\ 2)\ AB\longrightarrow BA\\ 3)\ A\longrightarrow \mbox{null}$ Protein $ABBAABA$ will change like this: $\\ ABB\underline{AA}BA\\ \underline{AB}BABA\\ B\underline{AB}ABA\\ BB\underline{AA}BA\\ BB\underline{AB}A\\ BBB\underline{AA}\\ BBB\underline{A}\\ BBB$ You see after finite steps this protein will finish it steps. Set of allowed steps that for them there exist a protein that may have infinitely many steps is dangerous. Which of the following allowed sets are dangerous? a) $NO\longrightarrow OONN$ b) $\left\{\begin{array}{c}HHCC\longrightarrow HCCH\\ CC\longrightarrow CH\end{array}\right.$ c) Design a set of allowed steps that change $\underbrace{AA\dots A}_{n}\longrightarrow\underbrace{BB\dots B}_{2^{n}}$ d) Design a set of allowed steps that change $\underbrace{A\dots A}_{n}\underbrace{B\dots B}_{m}\longrightarrow\underbrace{CC\dots C}_{mn}$ You see from $c$ and $d$ that we acn calculate the functions $F(n)=2^{n}$ and $G(M,N)=mn$ with these steps. Find some other calculatable functions with these steps. (It has some extra mark.)

1970 Bulgaria National Olympiad, Problem 2

Tags: algebra , rates
Two bicyclists traveled the distance from $A$ to $B$, which is $100$ km, with speed $30$ km/h and it is known that the first started $30$ minutes before the second. $20$ minutes after the start of the first bicyclist from $A$, there is a control car started whose speed is $90$ km/h and it is known that the car is reached the first bicyclist and is driving together with him for $10$ minutes, went back to the second and was driving for $10$ minutes with him and after that the car is started again to the first bicyclist with speed $90$ km/h and etc. to the end of the distance. How many times will the car drive together with the first bicyclist? [i]K. Dochev[/i]

2001 Belarusian National Olympiad, 1

On the Cartesian coordinate plane, the graph of the parabola $y = x^2$ is drawn. Three distinct points $A$, $B$, and $C$ are marked on the graph with $A$ lying between $B$ and $C$. Point $N$ is marked on $BC$ so that $AN$ is parallel to the y-axis. Let $K_1$ and $K_2$ are the areas of triangles $ABN$ and $ACN$, respectively. Express $AN$ in terms of $K_1$ and $K_2$.

2024 Euler Olympiad, Round 1, 7

Anna took a number \(N\), which is written in base 10 and has fewer than 9 digits, and duplicated it by writing another \(N\) to its left, creating a new number with twice as many digits. Bob computed the sum of all integers from 1 to \(N\). It turned out that Anna's new number is 7 times as large as the sum computed by Bob. Determine \(N\). [i]Proposed by Bachana Kutsia, Georgia [/i]