Found problems: 85335
2009 Indonesia MO, 2
For any real $ x$, let $ \lfloor x\rfloor$ be the largest integer that is not more than $ x$. Given a sequence of positive integers $ a_1,a_2,a_3,\ldots$ such that $ a_1>1$ and
\[ \left\lfloor\frac{a_1\plus{}1}{a_2}\right\rfloor\equal{}\left\lfloor\frac{a_2\plus{}1}{a_3}\right\rfloor\equal{}\left\lfloor\frac{a_3\plus{}1}{a_4}\right\rfloor\equal{}\cdots\]
Prove that
\[ \left\lfloor\frac{a_n\plus{}1}{a_{n\plus{}1}}\right\rfloor\leq1\]
holds for every positive integer $ n$.
2012 Korea - Final Round, 3
$ A_1 , A_2 , \cdots , A_n $ are given subsets. Let $ S = \left\{ 1, 2, \cdots , n \right\} $. For any $ X \subset S $, let
\[ N(X)= \left\{ i \in S-X \ | \ \forall j \in X, \ A_i \cap A_j \ne \emptyset \right\} \]
Let $ m $ be an integer such that $ 3 \le m \le n-2 $. Prove that there exist $ X \subset S $ such that $ |X|=m $ and $ |N(X)| \ne 1 $.
2005 Purple Comet Problems, 17
Functions $f$ and $g$ are defined so that $f(1) = 4$, $g(1) = 9$, and for each integer $n \ge 1$, $f(n+1) = 2f(n) + 3g(n) + 2n $ and $g(n+1) = 2g(n) + 3 f(n) + 5$. Find $f(2005) - g(2005)$.
2019 Tournament Of Towns, 5
The point $M$ inside a convex quadrilateral $ABCD$ is equidistant from the lines $AB$ and $CD$ and is equidistant from the lines $BC$ and $AD$. The area of $ABCD$ occurred to be equal to $MA\cdot MC +MB \cdot MD$. Prove that the quadrilateral $ABCD$ is
a) tangential (circumscribed),
b) cyclic (inscribed).
(Nairi Sedrakyan)
2016 IberoAmerican, 3
Let $ABC$ be an acute triangle and $\Gamma$ its circumcircle. The lines tangent to $\Gamma$ through $B$ and $C$ meet at $P$. Let $M$ be a point on the arc $AC$ that does not contain $B$ such that $M \neq A$ and $M \neq C$, and $K$ be the point where the lines $BC$ and $AM$ meet. Let $R$ be the point symmetrical to $P$ with respect to the line $AM$ and $Q$ the point of intersection of lines $RA$ and $PM$. Let $J$ be the midpoint of $BC$ and $L$ be the intersection point of the line $PJ$ and the line through $A$ parallel to $PR$. Prove that $L, J, A, Q,$ and $K$ all lie on a circle.
2018 Turkey Team Selection Test, 5
We say that a group of $25$ students is a [i]team[/i] if any two students in this group are friends. It is known that in the school any student belongs to at least one team but if any two students end their friendships at least one student does not belong to any team. We say that a team is [i]special[/i] if at least one student of the team has no friend outside of this team. Show that any two friends belong to some special team.
2019 Korea Junior Math Olympiad., 6
Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ which satisfies the followings. (Note that $\mathbb{R}$ stands for the set of all real numbers)
(1) For each real numbers $x$, $y$, the equality $f(x+f(x)+xy) = 2f(x)+xf(y)$ holds.
(2) For every real number $z$, there exists $x$ such that $f(x) = z$.
2000 Harvard-MIT Mathematics Tournament, 15
Find the number of ways of filling a $8$ by $8$ grid with $0$'s and $X$'s so that the number of $0$'s in each row and each column is odd.
VI Soros Olympiad 1999 - 2000 (Russia), 8.5
Solve the following system of equations in natural numbers
$$\begin{cases} a^4+14ab+1=n^4 \\ b^4+14bc+1=m^4 \\ c^4+14ca+1=k^4 \end{cases}$$
1964 IMO, 4
Seventeen people correspond by mail with one another-each one with all the rest. In their letters only three different topics are discussed. each pair of correspondents deals with only one of these topics. Prove that there are at least three people who write to each other about the same topic.
2024 VJIMC, 3
Let $a_1>0$ and for $n \ge 1$ define
\[a_{n+1}=a_n+\frac{1}{a_1+a_2+\dots+a_n}.\]
Prove that
\[\lim_{n \to \infty} \frac{a_n^2}{\ln n}=2.\]
1982 All Soviet Union Mathematical Olympiad, 335
Three numbers $a,b,c$ belong to $[0,\pi /2]$ interval with $$\cos a = a, \sin(\cos b) = b, \cos(\sin c ) = c$$ Sort those numbers in increasing order.
2004 National Chemistry Olympiad, 52
The triple bond in carbon monoxide consists of
$ \textbf{(A) } \text{3 sigma bonds}\qquad$
$\textbf{(B) } \text{2 sigma bonds and 1 pi bond}\qquad$
$\textbf{(C) } \text{1 sigma bond and 2 pi bonds}\qquad$
$\textbf{(D) } \text{3 pi bonds}\qquad$
2019 Online Math Open Problems, 16
Let $ABC$ be a scalene triangle with inradius $1$ and exradii $r_A$, $r_B$, and $r_C$ such that \[20\left(r_B^2r_C^2+r_C^2r_A^2+r_A^2r_B^2\right)=19\left(r_Ar_Br_C\right)^2.\] If \[\tan\frac{A}{2}+\tan\frac{B}{2}+\tan\frac{C}{2}=2.019,\] then the area of $\triangle{ABC}$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $100m+n$.
[i]Proposed by Tristan Shin[/i]
2011 Dutch IMO TST, 1
Let $n \ge 2$ and $k \ge1$ be positive integers. In a country there are $n$ cities and between each pair of cities there is a bus connection in both directions. Let $A$ and $B$ be two different cities. Prove that the number of ways in which you can travel from $A$ to $B$ by using exactly $k$ buses is equal to $\frac{(n - 1)^k - (-1)^k}{n}$
.
2021 Latvia Baltic Way TST, P9
Pentagon $ABCDE$ with $CD\parallel BE$ is inscribed in circle $\omega$. Tangent to $\omega$ through $B$ intersects line $AC$ at $F$ in a way that $A$ lies between $C$ and $F$. Lines $BD$ and $AE$ intersect at $G$. Prove that $FG$ is tangent to the circumcircle of $\triangle ADG$.
1992 AMC 8, 17
The sides of a triangle have lengths $6.5$, $10$, and $s$, where $s$ is a whole number. What is the smallest possible value of $s$?
[asy]
pair A,B,C;
A=origin; B=(10,0); C=6.5*dir(15);
dot(A); dot(B); dot(C);
draw(B--A--C);
draw(B--C,dashed);
label("$6.5$",3.25*dir(15),NNW);
label("$10$",(5,0),S);
label("$s$",(8,1),NE);
[/asy]
$\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 7$
2020 CIIM, 4
For each polynomial $P(x)$ with real coefficients, define
$P_0=P(0)$ and $P_j(x)=x^j\cdot P^{(j)}(x)$
where $P^{(j)}$ denotes the $j$-th derivative of $P$ for $j\geq 1$.
Prove that there exists one unique sequence of real numbers $b_0, b_1, b_2, \dots$ such that for each polynomial $P(x)$ with real coefficients and for each $x$ real, we have
$P(x)=b_0P_0+\sum_{k\geq 1}b_kP_k(x)=b_0P_0+b_1P_1(x)+b_2P_2(x)+\dots$
2019 Tournament Of Towns, 1
Let us call the number of factors in the prime decomposition of an integer $n > 1$ the complexity of $n$. For example, [i]complexity [/i] of numbers $4$ and $6$ is equal to $2$. Find all $n$ such that all integers between $n$ and $2n$ have complexity
a) not greater than the complexity of $n$.
b) less than the complexity of $n$.
(Boris Frenkin)
2012 Kyiv Mathematical Festival, 2
Positive numbers $x, y, z$ satisfy $x + y + z \le 1$. Prove that $\big( \frac{1}{x}-1\big) \big( \frac{1}{y}-1\big)\big( \frac{1}{z}-1\big) \ge 8$.
2013 NIMO Problems, 4
Let $a,b,c$ be the answers to problems $4$, $5$, and $6$, respectively. In $\triangle ABC$, the measures of $\angle A$, $\angle B$, and $\angle C$ are $a$, $b$, $c$ in degrees, respectively. Let $D$ and $E$ be points on segments $AB$ and $AC$ with $\frac{AD}{BD} = \frac{AE}{CE} = 2013$. A point $P$ is selected in the interior of $\triangle ADE$, with barycentric coordinates $(x,y,z)$ with respect to $\triangle ABC$ (here $x+y+z=1$). Lines $BP$ and $CP$ meet line $DE$ at $B_1$ and $C_1$, respectively. Suppose that the radical axis of the circumcircles of $\triangle PDC_1$ and $\triangle PEB_1$ pass through point $A$. Find $100x$.
[i]Proposed by Evan Chen[/i]
Estonia Open Senior - geometry, 2015.2.5
The triangle $K_2$ has as its vertices the feet of the altitudes of a non-right triangle $K_1$. Find all possibilities for the sizes of the angles of $K_1$ for which the triangles $K_1$ and $K_2$ are similar.
2010 HMNT, 5
Circle $O$ has chord $AB$. A circle is tangent to $O$ at $T$ and tangent to$ AB$ at $X$ such that $AX = 2XB$. What is $\frac{AT}{BT}$ ?
2016 China Team Selection Test, 6
Find all functions $f: \mathbb R^+ \rightarrow \mathbb R^+$ satisfying the following condition: for any three distinct real numbers $a,b,c$, a triangle can be formed with side lengths $a,b,c$, if and only if a triangle can be formed with side lengths $f(a),f(b),f(c)$.
1985 IMO Longlists, 87
Determine the radius of a sphere $S$ that passes through the centroids of each face of a given tetrahedron $T$ inscribed in a unit sphere with center $O$. Also, determine the distance from $O$ to the center of $S$ as a function of the edges of $T.$