This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2007 France Team Selection Test, 1

For a positive integer $a$, $a'$ is the integer obtained by the following method: the decimal writing of $a'$ is the inverse of the decimal writing of $a$ (the decimal writing of $a'$ can begin by zeros, but not the one of $a$); for instance if $a=2370$, $a'=0732$, that is $732$. Let $a_{1}$ be a positive integer, and $(a_{n})_{n \geq 1}$ the sequence defined by $a_{1}$ and the following formula for $n \geq 1$: \[a_{n+1}=a_{n}+a'_{n}. \] Can $a_{7}$ be prime?

2022 Turkey Team Selection Test, 6

For a polynomial $P(x)$ with integer coefficients and a prime $p$, if there is no $n \in \mathbb{Z}$ such that $p|P(n)$, we say that polynomial $P$ [i]excludes[/i] $p$. Is there a polynomial with integer coefficients such that having degree of 5, excluding exactly one prime and not having a rational root?

1998 IMO Shortlist, 7

Prove that for each positive integer $n$, there exists a positive integer with the following properties: It has exactly $n$ digits. None of the digits is 0. It is divisible by the sum of its digits.

2001 AIME Problems, 1

Tags:
Find the sum of all positive two-digit integers that are divisible by each of their digits.

2021 Balkan MO Shortlist, N3

Let $n$ be a positive integer. Determine, in terms of $n$, the greatest integer which divides every number of the form $p + 1$, where $p \equiv 2$ mod $3$ is a prime number which does not divide $n$.

2010 AMC 10, 10

Tags:
Marvin had a birthday on Tuesday, May $ 27$ in the leap year $ 2008$. In what year will his birthday next fall on a Saturday? $ \textbf{(A)}\ 2011 \qquad \textbf{(B)}\ 2012 \qquad \textbf{(C)}\ 2013 \qquad \textbf{(D)}\ 2015 \qquad \textbf{(E)}\ 2017$

2014 Contests, 2

Let $\Delta A_1A_2A_3, \Delta B_1B_2B_3, \Delta C_1C_2C_3$ be three equilateral triangles. The vertices in each triangle are numbered [u]clockwise[/u]. It is given that $A_3=B_3=C_3$. Let $M$ be the center of mass of $\Delta A_1B_1C_1$, and let $N$ be the center of mass of $\Delta A_2B_2C_2$. Prove that $\Delta A_3MN$ is an equilateral triangle.

2018 Iran MO (1st Round), 2

A factory packs its products in cubic boxes. In one store, they put $512$ of these cubic boxes together to make a large $8\times 8 \times 8$ cube. When the temperature goes higher than a limit in the store, it is necessary to separate the $512$ set of boxes using horizontal and vertical plates so that each box has at least one face which is not touching other boxes. What is the least number of plates needed for this purpose?

2022 Novosibirsk Oral Olympiad in Geometry, 6

A triangle $ABC$ is given in which $\angle BAC = 40^o$. and $\angle ABC = 20^o$. Find the length of the angle bisector drawn from the vertex $C$, if it is known that the sides $AB$ and $BC$ differ by $4$ centimeters.

2014 AIME Problems, 5

Let the set $S = \{P_1, P_2, \cdots, P_{12}\}$ consist of the twelve vertices of a regular $12$-gon. A subset $Q$ of $S$ is called communal if there is a circle such that all points of $Q$ are inside the circle, and all points of $S$ not in $Q$ are outside of the circle. How many communal subsets are there? (Note that the empty set is a communal subset.)

2015 Romania Team Selection Test, 3

A Pythagorean triple is a solution of the equation $x^2 + y^2 = z^2$ in positive integers such that $x < y$. Given any non-negative integer $n$ , show that some positive integer appears in precisely $n$ distinct Pythagorean triples.

2021 Indonesia MO, 8

On a $100 \times 100$ chessboard, the plan is to place several $1 \times 3$ boards and $3 \times 1$ board, so that [list] [*] Each tile of the initial chessboard is covered by at most one small board. [*] The boards cover the entire chessboard tile, except for one tile. [*] The sides of the board are placed parallel to the chessboard. [/list] Suppose that to carry out the instructions above, it takes $H$ number of $1 \times 3$ boards and $V$ number of $3 \times 1$ boards. Determine all possible pairs of $(H,V)$. [i]Proposed by Muhammad Afifurrahman, Indonesia[/i]

1918 Eotvos Mathematical Competition, 2

Find three distinct natural numbers such that the sum of their reciprocals is an integer.

2019 Dutch BxMO TST, 5

In a country, there are $2018$ cities, some of which are connected by roads. Each city is connected to at least three other cities. It is possible to travel from any city to any other city using one or more roads. For each pair of cities, consider the shortest route between these two cities. What is the greatest number of roads that can be on such a shortest route?

2013 Rioplatense Mathematical Olympiad, Level 3, 5

Find all positive integers $n$ for which there exist two distinct numbers of $n$ digits, $\overline{a_1a_2\ldots a_n}$ and $\overline{b_1b_2\ldots b_n}$, such that the number of $2n$ digits $\overline{a_1a_2\ldots a_nb_1b_2\ldots b_n}$ is divisible by $\overline{b_1b_2\ldots b_na_1a_2\ldots a_n}$.

2005 Romania National Olympiad, 4

Tags: algebra , function , limit
Let $f:\mathbb{R}\to\mathbb{R}$ be a convex function. a) Prove that $f$ is continous; b) Prove that there exists an unique function $g:[0,\infty)\to\mathbb{R}$ such that for all $x\geq 0$ we have \[ f(x+g(x)) = f(g(x)) - g(x) . \]

Novosibirsk Oral Geo Oly IX, 2019.3

Tags: geometry , area , square
The circle touches the square and goes through its two vertices as shown in the figure. Find the area of the square. (Distance in the picture is measured horizontally from the midpoint of the side of the square.) [img]https://cdn.artofproblemsolving.com/attachments/7/5/ab4b5f3f4fb4b70013e6226ce5189f3dc2e5be.png[/img]

1974 Chisinau City MO, 85

Tags: geometry , similar
We will say that a convex polygon $M$ has the property $(*)$ if the straight lines on which its sides lie, being moved outward by a distance of $1$ cm, form a polygon $M'$, similar to this one. a) Prove that if a convex polygon has property $(*)$ , then a circle can be inscribed in it. b) Find the fourth side of a quadrilateral satisfying condition $(*)$ if the lengths of its three consecutive sides are $9, 7$, and $3$ cm.

1998 Nordic, 3

(a) For which positive numbers $n$ does there exist a sequence $x_1, x_2, ..., x_n$, which contains each of the numbers $1, 2, ..., n$ exactly once and for which $x_1 + x_2 +... + x_k$ is divisible by $k$ for each $k = 1, 2,...., n$? (b) Does there exist an infinite sequence $x_1, x_2, x_3, ..., $ which contains every positive integer exactly once and such that $x_1 + x_2 +... + x_k$ is divisible by $k$ for every positive integer $k$?

MMPC Part II 1958 - 95, 1975

[b]p1.[/b] a) Given four points in the plane, no three of which lie on the same line, each subset of three points determines the vertices of a triangle. Can all these triangles have equal areas? If so, give an example of four points (in the plane) with this property, and then describe all arrangements of four joints (in the plane) which permit this. If no such arrangement exists, prove this. b) Repeat part a) with "five" replacing "four" throughout. [b]p2.[/b] Three people at the base of a long stairway begin a race up the stairs. Person A leaps five steps with each stride (landing on steps $5$, $10$, $15$, etc.). Person B leaps a little more slowly but covers six steps with each stride. Person C leaps seven steps with each stride. A picture taken near the end of the race shows all three landing simultaneously, with Person A twenty-one steps from the top, person B seven steps from the top, and Person C one step from the top. How many steps are there in the stairway? If you can find more than one answer, do so. Justify your answer. [b]p3. [/b]Let $S$ denote the sum of an infinite geometric series. Suppose the sum of the squares of the terms is $2S$, and that df the cubes is $64S/13$. Find the first three terms of the original series. [b]p4.[/b] $A$, $B$ and $C$ are three equally spaced points on a circular hoop. Prove that as the hoop rolls along the horizontal line $\ell$, the sum of the distances of the points $A, B$, and $C$ above line $\ell$ is constant. [img]https://cdn.artofproblemsolving.com/attachments/3/e/a1efd0975cf8ff3cf6acb1da56da1dce35d81e.png[/img] [b]p5.[/b] A set of $n$ numbers $x_1,x_2,x_3,...,x_n$ (where $n>1$) has the property that the $k^{th}$ number (that is, $x_k$ ) is removed from the set, the remaining $(n-1)$ numbers have a sum equal to $k$ (the subscript o $x_k$ ), and this is true for each $k = 1,2,3,...,n$. a) SoIve for these $n$ numbers b) Find whether at least one of these $n$ numbers can be an integer. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1940 Putnam, A2

Let $A,B$ be two fixed points on the curve $y=f(x)$, $f$ is continuous with continuous derivative and the arc $\widehat{AB}$ is concave to the chord $AB$. If $P$ is a point on the arc $\widehat{AB}$ for which $AP+PB$ is maximal, prove that $PA$ and $PB$ are equally inclined to the tangent to the curve $y=f(x)$ at $P$.

2006 AMC 12/AHSME, 1

Tags:
What is $ ( \minus{} 1)^1 \plus{} ( \minus{} 1)^2 \plus{} \cdots \plus{} ( \minus{} 1)^{2006}$? $ \textbf{(A) } \minus{} 2006 \qquad \textbf{(B) } \minus{} 1 \qquad \textbf{(C) } 0 \qquad \textbf{(D) } 1 \qquad \textbf{(E) } 2006$

2009 Bosnia Herzegovina Team Selection Test, 2

Tags: geometry
Line $p$ intersects sides $AB$ and $BC$ of triangle $\triangle ABC$ at points $M$ and $K.$ If area of triangle $\triangle MBK$ is equal to area of quadrilateral $AMKC,$ prove that \[\frac{\left|MB\right|+\left|BK\right|}{\left|AM\right|+\left|CA\right|+\left|KC\right|}\geq\frac{1}{3}\]

1997 Slovenia National Olympiad, Problem 4

Tags: logic
In an enterprise, no two employees have jobs of the same difficulty and no two of them take the same salary. Every employee gave the following two claims: (i) Less than $12$ employees have a more difficult work; (ii) At least $30$ employees take a higher salary. Assuming that an employee either always lies or always tells the truth, find how many employees are there in the enterprise.

2024 AMC 10, 9

Real numbers $a,b$ and $c$ have arithmetic mean $0$. The arithmetic mean of $a^2, b^2$ and $c^2$ is $10$. What is the arithmetic mean of $ab, ac$ and $bc$? $ \textbf{(A) }-5 \qquad \textbf{(B) }-\frac{10}{3} \qquad \textbf{(C) }-\frac{10}{9} \qquad \textbf{(D) }0 \qquad \textbf{(E) }\frac{10}{9} \qquad $