This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1983 Brazil National Olympiad, 3

Show that $1 + 1/2 + 1/3 + ... + 1/n$ is not an integer for $n > 1$.

1979 Spain Mathematical Olympiad, 7

Prove that the volume of a tire (torus) is equal to the volume of a cylinder whose base is a meridian section of that and whose height is the length of the circumference formed by the centers of the meridian sections.

1958 Miklós Schweitzer, 7

Tags:
[b]7.[/b] Let $a_0$ and $a_1$ be arbitrary real numbers, and let $a_{n+1}=a_n + \frac{2}{n+1}a_{n-1}$ $(n= 1, 2, \dots)$ Show that the sequence $\left (\frac{a_n}{n^2} \right )_{n=1}^{\infty}$ is convergent and find its limit. [b](S. 10)[/b]

2025 Poland - First Round, 11

Positive integer $l$ and positive real numbers $a_1, a_2, ..., a_l$ are given. For every positive integer $n$ we define $$c_n=\sum_{k_1+k_2+...+k_l=n}\frac{(2n)!}{(2k_1)!(2k_2)!...(2k_l)!}a_1^{k_1}a_2^{k_2}...a_l^{k_l}.$$ Prove that for every positive integer $n$ the inequality $\sqrt[n]{c_n}\leq \sqrt[n+1]{c_{n+1}}$ holds.

2002 Italy TST, 3

Prove that for any positive integer $ m$ there exist an infinite number of pairs of integers $(x,y)$ such that $(\text{i})$ $x$ and $y$ are relatively prime; $(\text{ii})$ $x$ divides $y^2+m;$ $(\text{iii})$ $y$ divides $x^2+m.$

1999 Mongolian Mathematical Olympiad, Problem 4

Investigate if there exist infinitely many natural numbers $n$ such that $n$ divides $2^n+3^n$.

2025 USAJMO, 4

Tags:
Let $n$ be a positive integer, and let $a_0,\,a_1,\dots,\,a_n$ be nonnegative integers such that $a_0\ge a_1\ge \dots\ge a_n.$ Prove that \[ \sum_{i=0}^n i\binom{a_i}{2}\le\frac{1}{2}\binom{a_0+a_1+\dots+a_n}{2}. \] [i]Note:[/i] $\binom{k}{2}=\frac{k(k-1)}{2}$ for all nonnegative integers $k$.

2022 Bangladesh Mathematical Olympiad, 7

Sabbir noticed one day that everyone in the city of BdMO has a distinct word of length $10$, where each letter is either $A$ or $B$. Sabbir saw that two citizens are friends if one of their words can be altered a few times using a special rule and transformed into the other ones word. The rule is, if somewhere in the word $ABB$ is located consecutively, then these letters can be changed to $BBA$ or if $BBA$ is located somewhere in the word consecutively, then these letters can be changed to $ABB$ (if wanted, the word can be kept as it is, without making this change.) For example $AABBA$ can be transformed into $AAABB$ (the opposite is also possible.) Now Sabbir made a team of $N$ citizens where no one is friends with anyone. What is the highest value of $N.$

2019 Denmark MO - Mohr Contest, 2

Two distinct numbers a and b satisfy that the two equations $x^{2019} + ax + 2b = 0$ and $x^{2019}+ bx + 2a = 0$ have a common solution. Determine all possible values of $a + b$.

2013 Greece Team Selection Test, 1

Determine whether the polynomial $P(x)=(x^2-2x+5)(x^2-4x+20)+1$ is irreducible over $\mathbb{Z}[X]$.

1999 South africa National Olympiad, 6

You are at a point $(a,b)$ and you need to reach another point $(c,d)$. Both points are below the line $x = y$ and have integer coordinates. You can move in steps of length 1, either upwards of to the right, but you may not move to a point on the line $x = y$. How many different paths are there?

2006 China Team Selection Test, 1

Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.

2015 Dutch IMO TST, 2

Determine all polynomials P(x) with real coefficients such that [(x + 1)P(x − 1) − (x − 1)P(x)] is a constant polynomial.

1995 India Regional Mathematical Olympiad, 6

Let $A_1A_2A_3 \ldots A_{21}$ be a 21-sided regular polygon inscribed in a circle with centre $O$. How many triangles $A_iA_jA_k$, $1 \leq i < j < k \leq 21$, contain the centre point $O$ in their interior?

2023 239 Open Mathematical Olympiad, 5

Let $a{}$ and $b>1$ be natural numbers. Prove that there exists a natural number $n < b^2$ such that the number $a^n + n$ is divisible by $b{}$.

2006 Bulgaria Team Selection Test, 1

[b]Problem 1. [/b]In the cells of square table are written the numbers $1$, $0$ or $-1$ so that in every line there is exactly one $1$, amd exactly one $-1$. Each turn we change the places of two columns or two rows. Is it possible, from any such table, after finite number of turns to obtain its opposite table (two tables are opposite if the sum of the numbers written in any two corresponding squares is zero)? [i] Emil Kolev[/i]

2007 Grigore Moisil Intercounty, 4

Let $ \left( x_n \right)_{n\ge 1} $ be a sequence of positive real numbers, verifying the inequality $ x_n\le \frac{x_{n-1}+x_{n-2}}{2} , $ for any natural number $ n\ge 3. $ Show that $ \left( x_n \right)_{n\ge 1} $ is convergent.

2024-25 IOQM India, 13

Tags:
Three positive integers $a,b,c$ with $a>c$ satisfy the following equations : $$ac + b+c = bc + a + 66, \; \; \; \; a+b+c=32$$ Find the value of $a$.

2013 Czech-Polish-Slovak Junior Match, 6

There is a square $ABCD$ in the plane with $|AB|=a$. Determine the smallest possible radius value of three equal circles to cover a given square.

MOAA Gunga Bowls, 2023.14

Tags:
Let $N$ be the number of ordered triples of 3 positive integers $(a,b,c)$ such that $6a$, $10b$, and $15c$ are all perfect squares and $abc = 210^{210}$. Find the number of divisors of $N$. [i]Proposed by Andy Xu[/i]

2001 Vietnam National Olympiad, 1

Tags: inequalities
Find the maximum value of $\frac{1}{x^{2}}+\frac{2}{y^{2}}+\frac{3}{z^{2}}$, where $x, y, z$ are positive reals satisfying $\frac{1}{\sqrt{2}}\leq z <\frac{ \min(x\sqrt{2}, y\sqrt{3})}{2}, x+z\sqrt{3}\geq\sqrt{6}, y\sqrt{3}+z\sqrt{10}\geq 2\sqrt{5}.$

2012 JBMO TST - Turkey, 2

Find all positive integers $m,n$ and prime numbers $p$ for which $\frac{5^m+2^np}{5^m-2^np}$ is a perfect square.

2020 Yasinsky Geometry Olympiad, 4

The median $AM$ is drawn in the triangle $ABC$ ($AB \ne AC$). The point $P$ is the foot of the perpendicular drawn on the segment $AM$ from the point $B$. On the segment $AM$ we chose such a point $Q$ that $AQ = 2PM$. Prove that $\angle CQM = \angle BAM$.

Gheorghe Țițeica 2025, P1

Tags: group theory
Let $G$ be a finite group and $a\in G$ a fixed element. Define the set $$S_a=\{g\in G\mid ga\neq ag, \,ga^2=a^2g\}.$$ Show that: [list=a] [*] if $g\in S_a$, then $ag^{-1}\in S_a$; [*] $|S_a|$ is divisible by $4$.

2022-23 IOQM India, 9

Tags: geometry
Two sides of an integer sided triangle have lengths $18$ and $x$. If there are exactly $35$ possible integer $y$ such that $18,x,y$ are the sides of a non-degenerate triangle, find the number of possible integer values $x$ can have.