This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2008 IMO Shortlist, 1

Let $ H$ be the orthocenter of an acute-angled triangle $ ABC$. The circle $ \Gamma_{A}$ centered at the midpoint of $ BC$ and passing through $ H$ intersects the sideline $ BC$ at points $ A_{1}$ and $ A_{2}$. Similarly, define the points $ B_{1}$, $ B_{2}$, $ C_{1}$ and $ C_{2}$. Prove that the six points $ A_{1}$, $ A_{2}$, $ B_{1}$, $ B_{2}$, $ C_{1}$ and $ C_{2}$ are concyclic. [i]Author: Andrey Gavrilyuk, Russia[/i]

2012 European Mathematical Cup, 4

Let $k$ be a positive integer. At the European Chess Cup every pair of players played a game in which somebody won (there were no draws). For any $k$ players there was a player against whom they all lost, and the number of players was the least possible for such $k$. Is it possible that at the Closing Ceremony all the participants were seated at the round table in such a way that every participant was seated next to both a person he won against and a person he lost against. [i]Proposed by Matija Bucić.[/i]

2015 Kyiv Math Festival, P3

Is it true that every positive integer greater than 30 is a sum of 4 positive integers such that each two of them have a common divisor greater than 1?

2010 Harvard-MIT Mathematics Tournament, 7

Tags: geometry
You are standing in an infinitely long hallway with sides given by the lines $x=0$ and $x=6$. You start at $(3,0)$ and want to get to $(3,6)$. Furthermore, at each instant you want your distance to $(3,6)$ to either decrease or stay the same. What is the area of the set of points that you could pass through on your journey from $(3,0)$ to $(3,6)$?

2012 Hanoi Open Mathematics Competitions, 3

Let be given a trapezoidal $ABCD$ with the based edges $BC = 3$ cm, $DA = 6$ cm ($AD // BC$). Then the length of the line $EF$ ($E \in AB , F \in CD$ and $EF // AD$) through the common point $M$ of $AC$ and $BD$ is (A) $3,5$ cm (B): $4$ cm (C) $4,5$ cm (D) $5$ cm (E) None of the above

2023 Spain Mathematical Olympiad, 1

Tags:
A $3\times 3\times 3$ cube is made of 27 unit cube pieces. Each piece contains a lamp, which can be on or off. Every time a piece is pressed (the center piece cannot be pressed), the state of that piece and the pieces that share a face with it changes. Initially all lamps are off. Determine which of the following states are achievable: (1) All lamps are on. (2) All lamps are on except the central one. (3) Only the central lamp is on.

2015 Czech-Polish-Slovak Junior Match, 5

Determine all natural numbers$ n> 1$ with the property: For each divisor $d> 1$ of number $n$, then $d - 1$ is a divisor of $n - 1$.

1958 AMC 12/AHSME, 42

In a circle with center $ O$, chord $ \overline{AB}$ equals chord $ \overline{AC}$. Chord $ \overline{AD}$ cuts $ \overline{BC}$ in $ E$. If $ AC \equal{} 12$ and $ AE \equal{} 8$, then $ AD$ equals: $ \textbf{(A)}\ 27\qquad \textbf{(B)}\ 24\qquad \textbf{(C)}\ 21\qquad \textbf{(D)}\ 20\qquad \textbf{(E)}\ 18$

2016 Japan MO Preliminary, 8

Tags: geometry
Let $\omega$ be an incircle of triangle $ABC$. Let $D$ be a point on segment $BC$, which is tangent to $\omega$. Let $X$ be an intersection of $AD$ and $\omega$ against $D$. If $AX : XD : BC = 1 : 3 : 10$, a radius of $\omega$ is $1$, find the length of segment $XD$. Note that $YZ$ expresses the length of segment $YZ$.

2015 CCA Math Bonanza, L1.3

Tags:
Daniel can hack a finite cylindrical log into $3$ pieces in $6$ minutes. How long would it take him to cut it into $9$ pieces, assuming each cut takes Daniel the same amount of time? [i]2015 CCA Math Bonanza Lightning Round #1.3[/i]

1972 Dutch Mathematical Olympiad, 4

On a circle with radius $1$ the points $A_1, A_2,..., A_n$ lie such that every arc $A_iA_{i+i}$ has length $\frac{2\pi}{n}= a$. Given that there exists a set $V$ consisting of $ k$ of these points ($k < n$), which has the property that each of the arc lengths $a$, $2a$$,...$, $(n- 1)a$ can be obtained in exactly one way be taken as the length of an arc traversed in a positive sense, beginning and ending in a point of $V$. Express $n$ in terms of $k$ and give the set $V$ for the case $n = 7$.

1998 Federal Competition For Advanced Students, Part 2, 3

In a parallelogram $ABCD$ with the side ratio $AB : BC = 2 : \sqrt 3$ the normal through $D$ to $AC$ and the normal through $C$ to $AB$ intersects in the point $E$ on the line $AB$. What is the relationship between the lengths of the diagonals $AC$ and $BD$?

2024 Princeton University Math Competition, A3 / B5

Joseph chooses a permutation of the numbers $1, 2, 3, 4, 5, 6$ uniformly at random. Then, he goes through his permutation, and deletes the numbers which are not the maximum among each of the preceding numbers. For example, if he chooses the permutation $3, 2, 4, 5, 1, 6,$ then he deletes $2$ and $1,$ leaving him with $3, 4, 5, 6.$ The expected number of numbers remaining can be expressed as $m/n$ for relatively prime positive integers $m$ and $n.$ Find $m + n.$

2018 Bosnia And Herzegovina - Regional Olympiad, 5

Let $H$ be an orhocenter of an acute triangle $ABC$ and $M$ midpoint of side $BC$. If $D$ and $E$ are foots of perpendicular of $H$ on internal and external angle bisector of angle $\angle BAC$, prove that $M$, $D$ and $E$ are collinear

2004 China Team Selection Test, 1

Points $D,E,F$ are on the sides $BC, CA$ and $AB$, respectively which satisfy $EF || BC$, $D_1$ is a point on $BC,$ Make $D_1E_1 || D_E, D_1F_1 || DF$ which intersect $AC$ and $AB$ at $E_1$ and $F_1$, respectively. Make $\bigtriangleup PBC \sim \bigtriangleup DEF$ such that $P$ and $A$ are on the same side of $BC.$ Prove that $E, E_1F_1, PD_1$ are concurrent. [color=red][Edit by Darij: See my post #4 below for a [b]possible correction[/b] of this problem. However, I am not sure that it is in fact the problem given at the TST... Does anyone have a reliable translation?][/color]

2003 IMC, 5

a) Show that for each function $f:\mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{R}$, there exists a function $g:\mathbb{Q}\rightarrow \mathbb{R}$ with $f(x,y) \leq g(x)+g(y) $ for all $x,y\in \mathbb{Q}$. b) Find a function $f:\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, for which there is no function $g:\mathbb{Q}\rightarrow \mathbb{R}$ such that $f(x,y) \leq g(x)+g(y) $ for all $x,y\in \mathbb{R}$.

2011 Croatia Team Selection Test, 3

Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.

2017 Simon Marais Mathematical Competition, A2

Tags: sequence , algebra
Let $a_1,a_2,a_3,\ldots$ be the sequence of real numbers defined by $a_1=1$ and $$a_m=\frac1{a_1^2+a_2^2+\ldots+a_{m-1}^2}\qquad\text{for }m\ge2.$$ Determine whether there exists a positive integer $N$ such that $$a_1+a_2+\ldots+a_N>2017^{2017}.$$

1966 Putnam, B3

Tags:
Show that if the series $$\sum_{n=1}^{\infty} \frac{1}{p_n}$$ is convergent, where $p_1,p_2,p_3,\dots, p_n, \dots$ are positive real numbers, then the series $$\sum_{n=1}^{\infty} \frac{n^2}{(p_1+p_2+\dots +p_n)^2}p_n$$ is also convergent.

2007 Bundeswettbewerb Mathematik, 2

At the start of the game there are $ r$ red and $ g$ green pieces/stones on the table. Hojoo and Kestutis make moves in turn. Hojoo starts. The person due to make a move, chooses a colour and removes $ k$ pieces of this colour. The number $ k$ has to be a divisor of the current number of stones of the other colour. The person removing the last piece wins. Who can force the victory?

2021 USMCA, 20

Tags:
Let $\tau(n)$ be the number of positive divisors of $n$, let $f(n) = \sum_{d \mid n} \tau(d)$, and let $g(n) = \sum_{d \mid n} f(d)$. Let $P_n$ be the product of the first $n$ prime numbers, and let $M = P_1 P_2 \cdots P_{2021}$. Then $\sum_{d \mid M} \frac{1}{g(d)} = \frac{a}{b}$, where $a, b$ are relatively prime positive integers. What is the remainder when $\tau(ab)$ is divided by $2017$? (Here, $\sum_{d \mid n}$ means a sum over the positive divisors of $n$.)

2020 Brazil National Olympiad, 1

Let $ABC$ be an acute triangle and $AD$ a height. The angle bissector of $\angle DAC$ intersects $DC$ at $E$. Let $F$ be a point on $AE$ such that $BF$ is perpendicular to $AE$. If $\angle BAE=45º$, find $\angle BFC$.

DMM Devil Rounds, 2005

[b]p1.[/b] Let $a$ and $b$ be complex numbers such that $a^3 + b^3 = -17$ and $a + b = 1$. What is the value of $ab$? [b]p2.[/b] Let $AEFB$ be a right trapezoid, with $\angle AEF = \angle EAB = 90^o$. The two diagonals $EB$ and $AF$ intersect at point $D$, and $C$ is a point on $AE$ such that $AE \perp DC$. If $AB = 8$ and $EF = 17$, what is the lenght of $CD$? [b]p3.[/b] How many three-digit numbers $abc$ (where each of $a$, $b$, and $c$ represents a single digit, $a \ne 0$) are there such that the six-digit number $abcabc$ is divisible by $2$, $3$, $5$, $7$, $11$, or $13$? [b]p4.[/b] Let $S$ be the sum of all numbers of the form $\frac{1}{n}$ where $n$ is a postive integer and $\frac{1}{n}$ terminales in base $b$, a positive integer. If $S$ is $\frac{15}{8}$, what is the smallest such $b$? [b]p5.[/b] Sysyphus is having an birthday party and he has a square cake that is to be cut into $25$ square pieces. Zeus gets to make the first straight cut and messes up badly. What is the largest number of pieces Zeus can ruin (cut across)? Diagram? [b]p6.[/b] Given $(9x^2 - y^2)(9x^2 + 6xy + y^2) = 16$ and $3x + y = 2$. Find $x^y$. [b]p7.[/b] What is the prime factorization of the smallest integer $N$ such that $\frac{N}{2}$ is a perfect square, $\frac{N}{3}$ is a perfect cube, $\frac{N}{5}$ is a perfect fifth power? [b]p8.[/b] What is the maximum number of pieces that an spherical watermelon can be divided into with four straight planar cuts? [b]p9.[/b] How many ordered triples of integers $(x,y,z)$ are there such that $0 \le x, y, z \le 100$ and $$(x - y)^2 + (y - z)^2 + (z - x)^2 \ge (x + y - 2z) + (y + z - 2x)^2 + (z + x - 2y)^2.$$ [b]p10.[/b] Find all real solutions to $(2x - 4)^2 + (4x - 2)^3 = (4x + 2x - 6)^3$. [b]p11.[/b] Let $f$ be a function that takes integers to integers that also has $$f(x)=\begin{cases} x - 5\,\, if \,\, x \ge 50 \\ f (f (x + 12)) \,\, if \,\, x < 50 \end{cases}$$ Evaluate $f (2) + f (39) + f (58).$ [b]p12.[/b] If two real numbers are chosen at random (i.e. uniform distribution) from the interval $[0,1]$, what is the probability that theit difference will be less than $\frac35$? [b]p13.[/b] Let $a$, $b$, and $c$ be positive integers, not all even, such that $a < b$, $b = c - 2$, and $a^2 + b^2 = c^2$. What is the smallest possible value for $c$? [b]p14.[/b] Let $ABCD$ be a quadrilateral whose diagonals intersect at $O$. If $BO = 8$, $OD = 8$, $AO = 16$, $OC = 4$, and $AB = 16$, then find $AD$. [b]p15.[/b] Let $P_0$ be a regular icosahedron with an edge length of $17$ units. For each nonnegative integer $n$, recursively construct $P_{n+1}$ from Pn by performing the following procedure on each face of $P_n$: glue a regular tetrahedron to that face such that three of the vertices of the tetrahedron are the midpoints of the three adjacent edges of the face, and the last vertex extends outside of $P_n$. Express the number of square units in the surface area of $P_{17}$ in the form $$\frac{u^v\cdot w \sqrt{x}}{y^z}$$ , where $u, v, w, x, y$, and $z$ are integers, all greater than or equal to $2$, that satisfy the following conditions: the only perfect square that evenly divides $x$ is $1$, the GCD of $u$ and y is $1$, and neither $u$ nor $y$ divides $w$. Answers written in any other form will not be considered correct! PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1999 North Macedonia National Olympiad, 5

If $a,b,c$ are positive numbers with $a^2 +b^2 +c^2 = 1$, prove that $a+b+c+\frac{1}{abc} \ge 4\sqrt3$

2006 Iran MO (3rd Round), 6

a) $P(x),R(x)$ are polynomials with rational coefficients and $P(x)$ is not the zero polynomial. Prove that there exist a non-zero polynomial $Q(x)\in\mathbb Q[x]$ that \[P(x)\mid Q(R(x)).\] b) $P,R$ are polynomial with integer coefficients and $P$ is monic. Prove that there exist a monic polynomial $Q(x)\in\mathbb Z[x]$ that \[P(x)\mid Q(R(x)).\]