This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 PUMaC Geometry B, 5

Consider rectangle $ABCD$ with $AB=30$ and $BC=60$. Construct circle $T$ whose diameter is $AD$. Construct circle $S$ whose diameter is $AB$. Let circles $S$ and $T$ intersect at $P$ such that $P\neq A$. Let $AP$ intersect $BC$ at $E$. Let $F$ be the point on $AB$ such that $EF$ is tangent to the circle with diameter $AD$. Find the area of triangle $AEF$.

1982 IMO Longlists, 15

Show that the set $S$ of natural numbers $n$ for which $\frac{3}{n}$ cannot be written as the sum of two reciprocals of natural numbers ($S =\left\{n |\frac{3}{n} \neq \frac{1}{p} + \frac{1}{q} \text{ for any } p, q \in \mathbb N \right\}$) is not the union of finitely many arithmetic progressions.

2006 Princeton University Math Competition, 4

Tags: probability
A modern artist paints all of his paintings by dividing his $3$ ft by $5$ ft canvas into $21$ random regions. He then colours some of the regions, and leaves some of them white. If the smallest region has area $a = 10$ square inches, and the probability that any given region with area $a_i$ is left white is $\frac{a}{a_i}$, then what is the probability that any given point on the canvas is left white? ($1$ ft $= 12$ in)

1985 AIME Problems, 11

An ellipse has foci at $(9,20)$ and $(49,55)$ in the $xy$-plane and is tangent to the $x$-axis. What is the length of its major axis?

2019 India PRMO, 5

Let $N$ be the smallest positive integer such that $N+2N+3N+\ldots +9N$ is a number all of whose digits are equal. What is the sum of digits of $N$?

2012 Romania National Olympiad, 4

For any non-empty numerical numbers $A$ and $B$, denote $$A + B = \{a + b | a \in A, b \in B\} $$ a) Determine the largest natural number not $p$ with the property: [i] there exists[/i] $A,B \subset N$ [i]such that[/i] $card \, A = card\, B = p$ [i]and [/i] $A+B = \{0, 1, 2,..., 2012\}$ b) Determine the smallest natural number $n$ with the property: [i] there exists[/i] $A,B \subset N$ [i]such that[/i] $card \, A = card\, B $ [i]and [/i] $A+B =\{0, 1, 2,..., 2012\}$

2021 Kyiv City MO Round 1, 9.2

Roma wrote on the board each of the numbers $2018, 2019, 2020$, $100$ times each. Let us denote by $S(n)$ the sum of digits of positive integer $n$. In one action, Roma can choose any positive integer $k$ and instead of any three numbers $a, b, c$ written on the board write the numbers $2S(a + b) + k, 2S(b + c) + k$ and $2S(c + a) + k$. Can Roma after several such actions make $299$ numbers on the board equal, and the last one differing from them by $1$? [i]Proposed by Oleksii Masalitin[/i]

Today's calculation of integrals, 860

For a function $f(x)\ (x\geq 1)$ satisfying $f(x)=(\log_e x)^2-\int_1^e \frac{f(t)}{t}dt$, answer the questions as below. (a) Find $f(x)$ and the $y$-coordinate of the inflection point of the curve $y=f(x)$. (b) Find the area of the figure bounded by the tangent line of $y=f(x)$ at the point $(e,\ f(e))$, the curve $y=f(x)$ and the line $x=1$.

1998 USAMTS Problems, 1

Several pairs of positive integers $(m ,n )$ satisfy the condition $19m + 90 + 8n = 1998$. Of these, $(100, 1 )$ is the pair with the smallest value for $n$. Find the pair with the smallest value for $m$.

2000 Mongolian Mathematical Olympiad, Problem 3

Tags: geometry
Two points $A$ and $B$ move around two different circles in the plane with the same angular velocity. Suppose that there is a point $C$ which is equidistant from $A$ and $B$ at every moment. Prove that, at some moment, $A$ and $B$ will coincide.

1913 Eotvos Mathematical Competition, 1

Prove that for every integer $n > 2$, $$(1\cdot 2 \cdot 3 \cdot ... \cdot n)^2 > n^n.$$

1970 Poland - Second Round, 5

Given the polynomial $ P(x) = \frac{1}{2} - \frac{1}{3}x + \frac{1}{6}x^2 $. Let $ Q(x) = \sum_{k=0}^{m} b_k x^k $ be a polynomial given by $$ Q(x) = P(x) \cdot P(x^3) \cdot P(x^9) \cdot P(x^{27}) \cdot P(x^{81}). $$ Calculate $ \sum_{k=0}^m |b_k| $.

LMT Theme Rounds, 2023F 1B

Tags: theme , combi
Evaluate $\dbinom{6}{0}+\dbinom{6}{1}+\dbinom{6}{4}+\dbinom{6}{3}+\dbinom{6}{4}+\dbinom{6}{5}+\dbinom{6}{6}$ [i]Proposed by Jonathan Liu[/i] [hide=Solution] [i]Solution.[/i] $\boxed{64}$ We have that $\dbinom{6}{4}=\dbinom{6}{2}$, so $\displaystyle\sum_{n=0}^{6} \dbinom{6}{n}=2^6=\boxed{64}.$ [/hide]

2008 IMO Shortlist, 2

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

1983 Federal Competition For Advanced Students, P2, 6

Planes $ \pi _1$ and $ \pi _2$ in Euclidean space $ \mathbb{R} ^3$ partition $ S\equal{}\mathbb{R} ^3 \setminus (\pi _1 \cup \pi _2)$ into several components. Show that for any cube in $ \mathbb{R} ^3$, at least one of the components of $ S$ meets at least three faces of the cube.

2008 HMNT, 9

Tags:
Find the product of all real $x$ for which \[ 2^{3x+1} - 17 \cdot 2^{2x} + 2^{x+3} = 0. \]

2010 IMO Shortlist, 1

Let $ABC$ be an acute triangle with $D, E, F$ the feet of the altitudes lying on $BC, CA, AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P.$ The lines $BP$ and $DF$ meet at point $Q.$ Prove that $AP = AQ.$ [i]Proposed by Christopher Bradley, United Kingdom[/i]

2018 Saudi Arabia JBMO TST, 1

Let $n$ be a natural composite number. For each proper divisor $d$ of $n$ we write the number $d + 1$ on the board. Determine all natural numbers $n$ for which the numbers written on the board are all the proper divisors of a natural number $m$. (The proper divisors of a natural number $a> 1$ are the positive divisors of $a$ different from $1$ and $a$.)

2001 All-Russian Olympiad, 1

Two monic quadratic trinomials $f(x)$ and $g(x)$ take negative values on disjoint intervals. Prove that there exist positive numbers $\alpha$ and $\beta$ such that $\alpha f(x) + \beta g(x) > 0$ for all real $x$.

2019 Thailand Mathematical Olympiad, 10

Prove that there are infinitely many positive odd integer $n$ such that $n!+1$ is composite number.

2023 ELMO Shortlist, G1

Tags: geometry
Let \(ABCDE\) be a regular pentagon. Let \(P\) be a variable point on the interior of segment \(AB\) such that \(PA\ne PB\). The circumcircles of \(\triangle PAE\) and \(\triangle PBC\) meet again at \(Q\). Let \(R\) be the circumcenter of \(\triangle DPQ\). Show that as \(P\) varies, \(R\) lies on a fixed line. [i]Proposed by Karthik Vedula[/i]

2023 China National Olympiad, 4

Find the minimum positive integer $n\ge 3$, such that there exist $n$ points $A_1,A_2,\cdots, A_n$ satisfying no three points are collinear and for any $1\le i\le n$, there exist $1\le j \le n (j\neq i)$, segment $A_jA_{j+1}$ pass through the midpoint of segment $A_iA_{i+1}$, where $A_{n+1}=A_1$

2010 IMO Shortlist, 1

Find all function $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for all $x,y\in\mathbb{R}$ the following equality holds \[ f(\left\lfloor x\right\rfloor y)=f(x)\left\lfloor f(y)\right\rfloor \] where $\left\lfloor a\right\rfloor $ is greatest integer not greater than $a.$ [i]Proposed by Pierre Bornsztein, France[/i]

Estonia Open Senior - geometry, 2008.2.3

Two circles are drawn inside a parallelogram $ABCD$ so that one circle is tangent to sides $AB$ and $AD$ and the other is tangent to sides $CB$ and $CD$. The circles touch each other externally at point $K$. Prove that $K$ lies on the diagonal $AC$.

2022 Cyprus TST, 4

Let $m, n$ be positive integers with $m<n$ and consider an $n\times n$ board from which its upper left $ m\times m$ part has been removed. An example of such board for $n=5$ and $m=2$ is shown below. Determine for which pairs $(m, n)$ this board can be tiled with $3\times 1$ tiles. Each tile can be positioned either horizontally or vertically so that it covers exactly three squares of the board. The tiles should not overlap and should not cover squares outside of the board.