Found problems: 85335
2014 Contests, 3
Let $r,R$ and $r_a$ be the radii of the incircle, circumcircle and A-excircle of the triangle $ABC$ with $AC>AB$, respectively. $I,O$ and $J_A$ are the centers of these circles, respectively. Let incircle touches the $BC$ at $D$, for a point $E \in (BD)$ the condition $A(IEJ_A)=2A(IEO)$ holds.
Prove that
\[ED=AC-AB \iff R=2r+r_a.\]
2017 NIMO Problems, 6
Triangle $\triangle ABC$ has circumcenter $O$ and incircle $\gamma$. Suppose that $\angle BAC =60^\circ$ and $O$ lies on $\gamma$. If \[ \tan B \tan C = a + \sqrt{b} \] for positive integers $a$ and $b$, compute $100a+b$.
[i]Proposed by Kaan Dokmeci[/i]
2007 National Olympiad First Round, 24
The integers from $1$ to $n$ are arranged along a circle such that each number is a multiple of difference of its adjacents. For which $n$ below such an arrangement is possible?
$
\textbf{(A)}\ 5
\qquad\textbf{(B)}\ 6
\qquad\textbf{(C)}\ 7
\qquad\textbf{(D)}\ 9
\qquad\textbf{(E)}\ 13
$
2011 IberoAmerican, 2
Let $x_1,\ldots ,x_n$ be positive real numbers. Show that there exist $a_1,\ldots ,a_n\in\{-1,1\}$ such that:
\[a_1x_1^2+a_2x_2^2+\ldots +a_nx_n^2\ge (a_1x_1+a_2x_2+\ldots + a_n x_n)^2\]
1997 South africa National Olympiad, 1
From an initial triangle $\Delta A_0B_0C_0$, a sequence of triangles $\Delta A_1B_1C_1$, $A_2B_2C_2$, ... is formed such that, at each stage, $A_{k + 1}$, $B_{k + 1}$ and $C_{k + 1}$ are the points where the incircle of $\Delta A_kB_kC_k$ touches the sides $B_kC_k$, $C_kA_k$ and $A_kB_k$ respectively.
(a) Express $\angle A_{k + 1}B_{k + 1}C_{k + 1}$ in terms of $\angle A_kB_kC_k$.
(b) Deduce that, as $k$ increases, $\angle A_kB_kC_k$ tends to $60^{\circ}$.
2025 Romania EGMO TST, P1
The sequence of real numbers $a_0,a_1,a_2,\ldots$ is defined recursively by \[a_0=-1,\qquad\sum_{k=0}^n\dfrac{a_{n-k}}{k+1}=0\quad\text{for}\quad n\geq 1.\]Show that $ a_{n} > 0$ for all $ n\geq 1$.
[i]Proposed by Mariusz Skalba, Poland[/i]
1974 Miklós Schweitzer, 2
Let $ G$ be a $ 2$-connected nonbipartite graph on $ 2n$ vertices. Show that the vertex set of $ G$ can be split into two classes of $ n$ elements such that the edges joining the two classes form a connected, spanning subgraph.
[i]L. Lovasz[/i]
2008 JBMO Shortlist, 5
Is it possible to arrange the numbers $1^1, 2^2,..., 2008^{2008}$ one after the other, in such a way that the obtained number is a perfect square? (Explain your answer.)
2016 Junior Balkan MO, 4
A $5 \times 5$ table is called regular f each of its cells contains one of four pairwise distinct real numbers,such that each of them occurs exactly one in every $2 \times 2$ subtable.The sum of all numbers of a regular table is called the total sum of the table.With any four numbers,one constructs all possible regular tables,computes their total sums and counts the distinct outcomes.Determine the maximum possible count.
2015 Saudi Arabia IMO TST, 1
Find all functions $f : R_{>0} \to R$ such that $f \left(\frac{x}{y}\right) = f(x) + f(y) - f(x)f(y)$ for all $x, y \in R_{>0}$. Here, $R_{>0}$ denotes the set of all positive real numbers.
Nguyễn Duy Thái Sơn
1997 Bosnia and Herzegovina Team Selection Test, 5
$a)$ Prove that for all positive integers $n$ exists a set $M_n$ of positive integers with exactly $n$ elements and:
$i)$ Arithmetic mean of arbitrary non-empty subset of $M_n$ is integer
$ii)$ Geometric mean of arbitrary non-empty subset of $M_n$ is integer
$iii)$ Both arithmetic mean and geometry mean of arbitrary non-empty subset of $M_n$ is integer
$b)$ Does there exist infinite set $M$ of positive integers such that arithmetic mean of arbitrary non-empty subset of $M$ is integer
1982 Miklós Schweitzer, 7
Let $ V$ be a bounded, closed, convex set in $ \mathbb{R}^n$, and denote by $ r$ the radius of its circumscribed sphere (that is, the radius of the smallest sphere that contains $ V$). Show that $ r$ is the only real number with the following property: for any finite number of points in $ V$, there exists a point in $ V$ such that the arithmetic mean of its distances from the other points is equal to $ r$.
[i]Gy. Szekeres[/i]
1985 Polish MO Finals, 1
Find the largest $k$ such that for every positive integer $n$ we can find at least $k$ numbers in the set $\{n+1, n+2, ... , n+16\}$ which are coprime with $n(n+17)$.
2017 Mexico National Olympiad, 4
A subset $B$ of $\{1, 2, \dots, 2017\}$ is said to have property $T$ if any three elements of $B$ are the sides of a nondegenerate triangle. Find the maximum number of elements that a set with property $T$ may contain.
2013 ELMO Shortlist, 1
Let $ABC$ be a triangle with incenter $I$. Let $U$, $V$ and $W$ be the intersections of the angle bisectors of angles $A$, $B$, and $C$ with the incircle, so that $V$ lies between $B$ and $I$, and similarly with $U$ and $W$. Let $X$, $Y$, and $Z$ be the points of tangency of the incircle of triangle $ABC$ with $BC$, $AC$, and $AB$, respectively. Let triangle $UVW$ be the [i]David Yang triangle[/i] of $ABC$ and let $XYZ$ be the [i]Scott Wu triangle[/i] of $ABC$. Prove that the David Yang and Scott Wu triangles of a triangle are congruent if and only if $ABC$ is equilateral.
[i]Proposed by Owen Goff[/i]
2017 ABMC, Team
[u]Round 1[/u]
[b]1.1.[/b] A circle has a circumference of $20\pi$ inches. Find its area in terms of $\pi$.
[b]1.2.[/b] Let $x, y$ be the solution to the system of equations: $x^2 + y^2 = 10 \,\,\, , \,\,\, x = 3y$.
Find $x + y$ where both $x$ and $y$ are greater than zero.
[b]1. 3.[/b] Chris deposits $\$ 100$ in a bank account. He then spends $30\%$ of the money in the account on biology books. The next week, he earns some money and the amount of money he has in his account increases by $30 \%$. What percent of his original money does he now have?
[u]Round 2[/u]
[b]2.1.[/b] The bell rings every $45$ minutes. If the bell rings right before the first class and right after the last class, how many hours are there in a school day with $9$ bells?
[b]2.2.[/b] The middle school math team has $9$ members. They want to send $2$ teams to ABMC this year: one full team containing 6 members and one half team containing the other $3$ members. In how many ways can they choose a $6$ person team and a $3$ person team?
[b]2.3.[/b] Find the sum:
$$1 + (1 - 1)(1^2 + 1 + 1) + (2 - 1)(2^2 + 2 + 1) + (3 - 1)(3^2 + 3 + 1) + ...· + (8 - 1)(8^2 + 8 + 1) + (9 - 1)(9^2 + 9 + 1).$$
[u]Round 3[/u]
[b]3.1.[/b] In square $ABHI$, another square $BIEF$ is constructed with diagonal $BI$ (of $ABHI$) as its side. What is the ratio of the area of $BIEF$ to the area of $ABHI$?
[b]3.2.[/b] How many ordered pairs of positive integers $(a, b)$ are there such that $a$ and $b$ are both less than $5$, and the value of $ab + 1$ is prime? Recall that, for example, $(2, 3)$ and $(3, 2)$ are considered different ordered pairs.
[b]3.3.[/b] Kate Lin drops her right circular ice cream cone with a height of $ 12$ inches and a radius of $5$ inches onto the ground. The cone lands on its side (along the slant height). Determine the distance between the highest point on the cone to the ground.
[u]Round 4[/u]
[b]4.1.[/b] In a Museum of Fine Mathematics, four sculptures of Euler, Euclid, Fermat, and Allen, one for each statue, are nailed to the ground in a circle. Bob would like to fully paint each statue a single color such that no two adjacent statues are blue. If Bob only has only red and blue paint, in how many ways can he paint the four statues?
[b]4.2.[/b] Geo has two circles, one of radius 3 inches and the other of radius $18$ inches, whose centers are $25$ inches apart. Let $A$ be a point on the circle of radius 3 inches, and B be a point on the circle of radius $18$ inches. If segment $\overline{AB}$ is a tangent to both circles that does not intersect the line connecting their centers, find the length of $\overline{AB}$.
[b]4.3.[/b] Find the units digit to $2017^{2017!}$.
[u]Round 5[/u]
[b]5.1.[/b] Given equilateral triangle $\gamma_1$ with vertices $A, B, C$, construct square $ABDE$ such that it does not overlap with $\gamma_1$ (meaning one cannot find a point in common within both of the figures). Similarly, construct square $ACFG$ that does not overlap with $\gamma_1$ and square $CBHI$ that does not overlap with $\gamma_1$. Lines $DE$, $FG$, and $HI$ form an equilateral triangle $\gamma_2$. Find the ratio of the area of $\gamma_2$ to $\gamma_1$ as a fraction.
[b]5.2.[/b] A decimal that terminates, like $1/2 = 0.5$ has a repeating block of $0$. A number like $1/3 = 0.\overline{3}$ has a repeating block of length $ 1$ since the fraction bar is only over $ 1$ digit. Similarly, the numbers $0.0\overline{3}$ and $0.6\overline{5}$ have repeating blocks of length $ 1$. Find the number of positive integers $n$ less than $100$ such that $1/n$ has a repeating block of length $ 1$.
[b]5.3.[/b] For how many positive integers $n$ between $1$ and $2017$ is the fraction $\frac{n + 6}{2n + 6}$ irreducible? (Irreducibility implies that the greatest common factor of the numerator and the denominator is $1$.)
[u]Round 6[/u]
[b]6.1.[/b] Consider the binary representations of $2017$, $2017 \cdot 2$, $2017 \cdot 2^2$, $2017 \cdot 2^3$, $... $, $2017 \cdot 2^{100}$. If we take a random digit from any of these binary representations, what is the probability that this digit is a $1$ ?
[b]6.2.[/b] Aaron is throwing balls at Carlson’s face. These balls are infinitely small and hit Carlson’s face at only $1$ point. Carlson has a flat, circular face with a radius of $5$ inches. Carlson’s mouth is a circle of radius $ 1$ inch and is concentric with his face. The probability of a ball hitting any point on Carlson’s face is directly proportional to its distance from the center of Carlson’s face (so when you are $2$ times farther away from the center, the probability of hitting that point is $2$ times as large). If Aaron throws one ball, and it is guaranteed to hit Carlson’s face, what is the probability that it lands in Carlson’s mouth?
[b]6.3.[/b] The birth years of Atharva, his father, and his paternal grandfather form a geometric sequence. The birth years of Atharva’s sister, their mother, and their grandfather (the same grandfather) form an arithmetic sequence. If Atharva’s sister is $5$ years younger than Atharva and all $5$ people were born less than $200$ years ago (from $2017$), what is Atharva’s mother’s birth year?
[u]Round 7[/u]
[b]7. 1.[/b] A function $f$ is called an “involution” if $f(f(x)) = x$ for all $x$ in the domain of $f$ and the inverse of $f$ exists. Find the total number of involutions $f$ with domain of integers between $ 1$ and $ 8$ inclusive.
[b]7.2.[/b] The function $f(x) = x^3$ is an odd function since each point on $f(x)$ corresponds (through a reflection through the origin) to a point on $f(x)$. For example the point $(-2, -8)$ corresponds to $(2, 8)$. The function $g(x) = x^3 - 3x^2 + 6x - 10$ is a “semi-odd” function, since there is a point $(a, b)$ on the function such that each point on $g(x)$ corresponds to a point on $g(x)$ via a reflection over $(a, b)$. Find $(a, b)$.
[b]7.3.[/b] A permutations of the numbers $1, 2, 3, 4, 5$ is an arrangement of the numbers. For example, $12345$ is one arrangement, and $32541$ is another arrangement. Another way to look at permutations is to see each permutation as a function from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$. For example, the permutation $23154$ corresponds to the function f with $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, $f(5) = 4$, and $f(4) = 5$, where $f(x)$ is the $x$-th number of the permutation. But the permutation $23154$ has a cycle of length three since $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, and cycles after $3$ applications of $f$ when regarding a set of $3$ distinct numbers in the domain and range. Similarly the permutation $32541$ has a cycle of length three since $f(5) = 1$, $f(1) = 3$, and $f(3) = 5$. In a permutation of the natural numbers between $ 1$ and $2017$ inclusive, find the expected number of cycles
of length $3$.
[u]Round 8[/u]
[b]8.[/b] Find the number of characters in the problems on the accuracy round test. This does not include spaces and problem numbers (or the periods after problem numbers). For example, “$1$. What’s $5 + 10$?” would contain $11$ characters, namely “$W$,” “$h$,” “$a$,” “$t$,” “$’$,” “$s$,” “$5$,” “$+$,” “$1$,” “$0$,” “?”. If the correct answer is $c$ and your answer is $x$, then your score will be $$\max \left\{ 0, 13 -\left\lceil \frac{|x-c|}{100} \right\rceil \right\}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Nordic, 4
A positive integer is called simple if its ordinary decimal representation consists entirely of zeroes and ones. Find the least positive integer $k$ such that each positive integer $n$ can be written as $n = a_1 \pm a_2 \pm a_3 \pm \cdots \pm a_k$ where $a_1, \dots , a_k$ are simple.
2015 239 Open Mathematical Olympiad, 2
Prove that $\binom{n+k}{n}$ can be written as product of $n$ pairwise coprime numbers $a_1,a_2,\dots,a_n$ such that $k+i$ is divisible by $a_i$ for all indices $i$.
2023 MMATHS, 7
$ABCD$ is a regular tetrahedron of side length $4.$ Four congruent spheres are inside $ABCD$ such that each sphere is tangent to exactly three of the faces, the spheres have distinct centers, and the four spheres are concurrent at one point. Let $v$ be the volume of one of the spheres. If $v^2$ can be written as $\tfrac{a}{b}\pi^2,$ where $a$ and $b$ are relatively prime positive integers, find $a+b.$
2020 Estonia Team Selection Test, 2
There are 2020 inhabitants in a town. Before Christmas, they are all happy; but if an inhabitant does not receive any Christmas card from any other inhabitant, he or she will become sad. Unfortunately, there is only one post company which offers only one kind of service: before Christmas, each inhabitant may appoint two different other inhabitants, among which the company chooses one to whom to send a Christmas card on behalf of that inhabitant. It is known that the company makes the choices in such a way that as many inhabitants as possible will become sad. Find the least possible number of inhabitants who will become sad.
2014 Purple Comet Problems, 22
For positive integers $m$ and $n$, let $r(m, n)$ be the remainder when $m$ is divided by $n$. Find the smallest positive integer $m$ such that
\[r(m, 1) + r(m, 2) + r(m, 3) +\cdots+ r(m, 10) = 4.\]
2000 All-Russian Olympiad Regional Round, 8.1
Non-zero numbers $a$ and $b$ satisfy the equality $$a^2b^2(a^2b^2 + 4) = 2(a^6 + b^6).$$ Prove that at least one of them is irrational.
2013 ELMO Shortlist, 9
Let $a, b, c$ be positive reals, and let $\sqrt[2013]{\frac{3}{a^{2013}+b^{2013}+c^{2013}}}=P$. Prove that
\[\prod_{\text{cyc}}\left(\frac{(2P+\frac{1}{2a+b})(2P+\frac{1}{a+2b})}{(2P+\frac{1}{a+b+c})^2}\right)\ge \prod_{\text{cyc}}\left(\frac{(P+\frac{1}{4a+b+c})(P+\frac{1}{3b+3c})}{(P+\frac{1}{3a+2b+c})(P+\frac{1}{3a+b+2c})}\right).\][i]Proposed by David Stoner[/i]
2016 Romania National Olympiad, 3
Let be a real number $ a, $ and a function $ f:\mathbb{R}_{>0 }\longrightarrow\mathbb{R}_{>0 } . $ Show that the following relations are equivalent.
$ \text{(i)}\quad\varepsilon\in\mathbb{R}_{>0 } \implies\left( \lim_{x\to\infty } \frac{f(x)}{x^{a+\varepsilon }} =0\wedge \lim_{x\to\infty } \frac{f(x)}{x^{a-\varepsilon }} =\infty \right) $
$ \text{(ii)}\quad\lim_{x\to\infty } \frac{\ln f(x)}{\ln x } =a $
2018 BMT Spring, 7
A line in the $xy$-plane has positive slope, passes through the point $(x, y) = (0, 29)$, and lies tangent to the ellipse defined by $\frac{x^2}{100} +\frac{y^2}{400} = 1$. What is the slope of the line?