This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

2004 Bundeswettbewerb Mathematik, 4

A cube is decomposed in a finite number of rectangular parallelepipeds such that the volume of the cube's circum sphere volume equals the sum of the volumes of all parallelepipeds' circum spheres. Prove that all these parallelepipeds are cubes.

2014 Purple Comet Problems, 30

Three mutually tangent spheres each with radius $5$ sit on a horizontal plane. A triangular pyramid has a base that is an equilateral triangle with side length $6$, has three congruent isosceles triangles for vertical faces, and has height $12$. The base of the pyramid is parallel to the plane, and the vertex of the pyramid is pointing downward so that it is between the base and the plane. Each of the three vertical faces of the pyramid is tangent to one of the spheres at a point on the triangular face along its altitude from the vertex of the pyramid to the side of length $6$. The distance that these points of tangency are from the base of the pyramid is $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [asy] size(200); defaultpen(linewidth(0.8)); pair X=(-.6,.4),A=(-.4,2),B=(-.7,1.85),C=(-1.1,2.05); picture spherex; filldraw(spherex,unitcircle,white); draw(spherex,(-1,0)..(-.2,-.2)..(1,0)^^(0,1)..(-.2,-.2)..(0,-1)); add(shift(-0.5,0.6)*spherex); filldraw(X--A--C--cycle,gray); draw(A--B--C^^X--B); add(shift(-1.5,0.2)*spherex); add(spherex); [/asy]

2021 Sharygin Geometry Olympiad, 22

A convex polyhedron and a point $K$ outside it are given. For each point $M$ of a polyhedron construct a ball with diameter $MK$. Prove that there exists a unique point on a polyhedron which belongs to all such balls.

1997 Yugoslav Team Selection Test, Problem 1

Consider a regular $n$-gon $A_1A_2\ldots A_n$ with area $S$. Let us draw the lines $l_1,l_2,\ldots,l_n$ perpendicular to the plane of the $n$-gon at $A_1,A_2,\ldots,A_n$ respectively. Points $B_1,B_2,\ldots,B_n$ are selected on lines $l_1,l_2,\ldots,l_n$ respectively so that: (i) $B_1,B_2,\ldots,B_n$ are all on the same side of the plane of the $n$-gon; (ii) Points $B_1,B_2,\ldots,B_n$ lie on a single plane; (iii) $A_1B_1=h_1,A_2B_2=h_2,\ldots,A_nB_n=h_n$. Express the volume of polyhedron $A_1A_2\ldots A_nB_1B_2\ldots B_n$ as a function in $S,h_1,\ldots,h_n$.

1952 Moscow Mathematical Olympiad, 220

A sphere with center at $O$ is inscribed in a trihedral angle with vertex $S$. Prove that the plane passing through the three tangent points is perpendicular to $OS$.

2023 Romania National Olympiad, 4

Let $ABCD$ be a tetrahedron and $M$ and $N$ be the midpoints of $AC$ and $BD$, respectively. Show that for every point $P \in (MN)$ with $P \neq M$ and $P \neq N$, there exist unique points $X$ and $Y$ on segments $AB$ and $CD$, respectively, such that $X,P,Y$ are collinear.

2007 AMC 10, 21

A sphere is inscribed in a cube that has a surface area of $ 24$ square meters. A second cube is then inscribed within the sphere. What is the surface area in square meters of the inner cube? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ 12$

2014 District Olympiad, 3

Let $ABCDEF$ be a regular hexagon with side length $a$. At point $A$, the perpendicular $AS$, with length $2a\sqrt{3}$, is erected on the hexagon's plane. The points $M, N, P, Q,$ and $R$ are the projections of point $A$ on the lines $SB, SC, SD, SE,$ and $SF$, respectively. [list=a] [*]Prove that the points $M, N, P, Q, R$ lie on the same plane. [*]Find the measure of the angle between the planes $(MNP)$ and $(ABC)$.[/list]

1999 Brazil Team Selection Test, Problem 4

Assume that it is possible to color more than half of the surfaces of a given polyhedron so that no two colored surfaces have a common edge. (a) Describe one polyhedron with the above property. (b) Prove that one cannot inscribe a sphere touching all the surfaces of a polyhedron with the above property.

1985 AIME Problems, 2

When a right triangle is rotated about one leg, the volume of the cone produced is $800 \pi$ $\text{cm}^3$. When the triangle is rotated about the other leg, the volume of the cone produced is $1920 \pi$ $\text{cm}^3$. What is the length (in cm) of the hypotenuse of the triangle?

1992 Vietnam National Olympiad, 1

Let $ABCD$ be a tetrahedron satisfying i)$\widehat{ACD}+\widehat{BCD}=180^{0}$, and ii)$\widehat{BAC}+\widehat{CAD}+\widehat{DAB}=\widehat{ABC}+\widehat{CBD}+\widehat{DBA}=180^{0}$. Find value of $[ABC]+[BCD]+[CDA]+[DAB]$ if we know $AC+CB=k$ and $\widehat{ACB}=\alpha$.

1962 Poland - Second Round, 3

Prove that the four segments connecting the vertices of the tetrahedron with the centers of gravity of the opposite faces have a common point.

1967 Miklós Schweitzer, 5

Let $ f$ be a continuous function on the unit interval $ [0,1]$. Show that \[ \lim_{n \rightarrow \infty} \int_0^1... \int_0^1f(\frac{x_1+...+x_n}{n})dx_1...dx_n=f(\frac12)\] and \[ \lim_{n \rightarrow \infty} \int_0^1... \int_0^1f (\sqrt[n]{x_1...x_n})dx_1...dx_n=f(\frac1e).\]

2016 Czech-Polish-Slovak Junior Match, 3

Find all integers $n \ge 3$ with the following property: it is possible to assign pairwise different positive integers to the vertices of an $n$-gonal prism in such a way that vertices with labels $a$ and $b$ are connected by an edge if and only if $a | b$ or $b | a$. Poland

2000 Iran MO (3rd Round), 2

Call two circles in three-dimensional space pairwise tangent at a point $ P$ if they both pass through $ P$ and lines tangent to each circle at $ P$ coincide. Three circles not all lying in a plane are pairwise tangent at three distinct points. Prove that there exists a sphere which passes through the three circles.

1970 IMO Shortlist, 5

Let $M$ be an interior point of the tetrahedron $ABCD$. Prove that \[ \begin{array}{c}\ \stackrel{\longrightarrow }{MA} \text{vol}(MBCD) +\stackrel{\longrightarrow }{MB} \text{vol}(MACD) +\stackrel{\longrightarrow }{MC} \text{vol}(MABD) + \stackrel{\longrightarrow }{MD} \text{vol}(MABC) = 0 \end{array}\] ($\text{vol}(PQRS)$ denotes the volume of the tetrahedron $PQRS$).

1990 Baltic Way, 15

Prove that none of the numbers $2^{2^n}+ 1$, $n = 0, 1, 2, \dots$ is a perfect cube.

2015 AIME Problems, 9

A cylindrical barrel with radius $4$ feet and height $10$ feet is full of water. A solid cube with side length $8$ feet is set into the barrel so that the diagonal of the cube is vertical. The volume of water thus displaced is $v$ cubic feet. Find $v^2$. [asy] import three; import solids; size(5cm); currentprojection=orthographic(1,-1/6,1/6); draw(surface(revolution((0,0,0),(-2,-2*sqrt(3),0)--(-2,-2*sqrt(3),-10),Z,0,360)),white,nolight); triple A =(8*sqrt(6)/3,0,8*sqrt(3)/3), B = (-4*sqrt(6)/3,4*sqrt(2),8*sqrt(3)/3), C = (-4*sqrt(6)/3,-4*sqrt(2),8*sqrt(3)/3), X = (0,0,-2*sqrt(2)); draw(X--X+A--X+A+B--X+A+B+C); draw(X--X+B--X+A+B); draw(X--X+C--X+A+C--X+A+B+C); draw(X+A--X+A+C); draw(X+C--X+C+B--X+A+B+C,linetype("2 4")); draw(X+B--X+C+B,linetype("2 4")); draw(surface(revolution((0,0,0),(-2,-2*sqrt(3),0)--(-2,-2*sqrt(3),-10),Z,0,240)),white,nolight); draw((-2,-2*sqrt(3),0)..(4,0,0)..(-2,2*sqrt(3),0)); draw((-4*cos(atan(5)),-4*sin(atan(5)),0)--(-4*cos(atan(5)),-4*sin(atan(5)),-10)..(4,0,-10)..(4*cos(atan(5)),4*sin(atan(5)),-10)--(4*cos(atan(5)),4*sin(atan(5)),0)); draw((-2,-2*sqrt(3),0)..(-4,0,0)..(-2,2*sqrt(3),0),linetype("2 4")); [/asy]

2021 AIME Problems, 10

Two spheres with radii $36$ and one sphere with radius $13$ are each externally tangent to the other two spheres and to two different planes $\mathcal{P}$ and $\mathcal{Q}$. The intersection of planes $\mathcal{P}$ and $\mathcal{Q}$ is the line $\ell$. The distance from line $\ell$ to the point where the sphere with radius $13$ is tangent to plane $\mathcal{P}$ is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [img]https://imgur.com/1mfBNNL.png[/img]

1970 IMO Longlists, 45

Let $M$ be an interior point of tetrahedron $V ABC$. Denote by $A_1,B_1, C_1$ the points of intersection of lines $MA,MB,MC$ with the planes $VBC,V CA,V AB$, and by $A_2,B_2, C_2$ the points of intersection of lines $V A_1, VB_1, V C_1$ with the sides $BC,CA,AB$. [b](a)[/b] Prove that the volume of the tetrahedron $V A_2B_2C_2$ does not exceed one-fourth of the volume of $V ABC$. [b](b)[/b] Calculate the volume of the tetrahedron $V_1A_1B_1C_1$ as a function of the volume of $V ABC$, where $V_1$ is the point of intersection of the line $VM$ with the plane $ABC$, and $M$ is the barycenter of $V ABC$.

2008 National Olympiad First Round, 12

In how many ways a cube can be painted using seven different colors in such a way that no two faces are in same color? $ \textbf{(A)}\ 154 \qquad\textbf{(B)}\ 203 \qquad\textbf{(C)}\ 210 \qquad\textbf{(D)}\ 240 \qquad\textbf{(E)}\ \text{None of the above} $

2015 AMC 12/AHSME, 16

A regular hexagon with sides of length $6$ has an isosceles triangle attached to each side. Each of these triangles has two sides of length $8$. The isosceles triangles are folded to make a pyramid with the hexagon as the base of the pyramid. What is the volume of the pyramid? $\textbf{(A) }18\qquad\textbf{(B) }162\qquad\textbf{(C) }36\sqrt{21}\qquad\textbf{(D) }18\sqrt{138}\qquad\textbf{(E) }54\sqrt{21}$

1992 AIME Problems, 7

Faces $ABC$ and $BCD$ of tetrahedron $ABCD$ meet at an angle of $30^\circ$. The area of face $ABC$ is $120$, the area of face $BCD$ is $80$, and $BC=10$. Find the volume of the tetrahedron.

1966 IMO Longlists, 21

Prove that the volume $V$ and the lateral area $S$ of a right circular cone satisfy the inequality \[\left( \frac{6V}{\pi}\right)^2 \leq \left( \frac{2S}{\pi \sqrt 3}\right)^3\] When does equality occur?

1967 IMO Shortlist, 1

Prove that a tetrahedron with just one edge length greater than $1$ has volume at most $ \frac{1}{8}.$