Found problems: 2265
2000 Polish MO Finals, 1
$PA_1A_2...A_n$ is a pyramid. The base $A_1A_2...A_n$ is a regular n-gon. The apex $P$ is placed so that the lines $PA_i$ all make an angle $60^{\cdot}$ with the plane of the base. For which $n$ is it possible to find $B_i$ on $PA_i$ for $i = 2, 3, ... , n$ such that $A_1B_2 + B_2B_3 + B_3B_4 + ... + B_{n-1}B_n + B_nA_1 < 2A_1P$?
1967 Bulgaria National Olympiad, Problem 4
Outside of the plane of the triangle $ABC$ is given point $D$.
(a) prove that if the segment $DA$ is perpendicular to the plane $ABC$ then orthogonal projection of the orthocenter of the triangle $ABC$ on the plane $BCD$ coincides with the orthocenter of the triangle $BCD$.
(b) for all tetrahedrons $ABCD$ with base, the triangle $ABC$ with smallest of the four heights that from the vertex $D$, find the locus of the foot of that height.
2011 BAMO, 3
Consider the $8\times 8\times 8$ Rubik’s cube below. Each face is painted with a different color, and it is possible to turn any layer, as you can with smaller Rubik’s cubes. Let $X$ denote the move that turns the shaded layer shown (indicated by arrows going from the top to the right of the cube) clockwise by $90$ degrees, about the axis labeled $X$. When move $X$ is performed, the only layer that moves is the shaded layer.
Likewise, define move $Y$ to be a clockwise $90$-degree turn about the axis labeled Y, of just the shaded layer shown (indicated by the arrows going from the front to the top, where the front is the side pierced by the $X$ rotation axis). Let $M$ denote the move “perform $X$, then perform $Y$.”
[img]https://cdn.artofproblemsolving.com/attachments/e/f/951ea75a3dbbf0ca23c45cd8da372595c2de48.png[/img]
Imagine that the cube starts out in “solved” form (so each face has just one color), and we start doing move $M$ repeatedly. What is the least number of repeats of $M$ in order for the cube to be restored to its original colors?
2019 LIMIT Category C, Problem 10
A right circular cylinder is inscribed in a sphere of radius $\sqrt3$. What is the height of the cylinder when its volume is maximal?
1970 IMO Longlists, 17
In the tetrahedron $ABCD,\angle BDC=90^o$ and the foot of the perpendicular from $D$ to $ABC$ is the intersection of the altitudes of $ABC$. Prove that: \[ (AB+BC+CA)^2\le6(AD^2+BD^2+CD^2). \] When do we have equality?
2006 Romania National Olympiad, 1
We consider a prism with 6 faces, 5 of which are circumscriptible quadrilaterals. Prove that all the faces of the prism are circumscriptible quadrilaterals.
1978 Romania Team Selection Test, 6
Show that there is no polyhedron whose projection on the plane is a nondegenerate triangle.
1969 Polish MO Finals, 5
For which values of n does there exist a polyhedron having $n$ edges?
1986 IMO Longlists, 17
We call a tetrahedron right-faced if each of its faces is a right-angled triangle.
[i](a)[/i] Prove that every orthogonal parallelepiped can be partitioned into six right-faced tetrahedra.
[i](b)[/i] Prove that a tetrahedron with vertices $A_1,A_2,A_3,A_4$ is right-faced if and only if there exist four distinct real numbers $c_1, c_2, c_3$, and $c_4$ such that the edges $A_jA_k$ have lengths $A_jA_k=\sqrt{|c_j-c_k|}$ for $1\leq j < k \leq 4.$
1988 Bulgaria National Olympiad, Problem 5
The points of space are painted in two colors. Prove that there is a tetrahedron such that all its vertices and its centroid are of the same color.
2010 Today's Calculation Of Integral, 566
In the coordinate space, consider the cubic with vertices $ O(0,\ 0,\ 0),\ A(1,\ 0,\ 0),\ B(1,\ 1,\ 0),\ C(0,\ 1,\ 0),\ D(0,\ 0,\ 1),\ E(1,\ 0,\ 1),\ F(1,\ 1,\ 1),\ G(0,\ 1,\ 1)$. Find the volume of the solid generated by revolution of the cubic around the diagonal $ OF$ as the axis of rotation.
1997 Romania National Olympiad, 3
$ABCDA'B'CD'$ is a rectangular parallelepiped with $AA'= 2AB = 8a$ , $E$ is the midpoint of $(AB)$ and $M$ is the point of $(DD')$ for which $DM = a \left( 1 + \frac{AD}{AC}\right)$.
a) Find the position of the point. $F$ on the segment $(AA')$ for which the sum $CF + FM$ has the minimum possible value.
b) Taking $F$ as above, compute the measure of the angle of the planes $(D, E, F)$ and $(D, B', C')$.
c) Knowing that the straight lines $AC'$ and $FD$ are perpendicular, compute the volume of the parallelepiped $ABCDA'B'C'D'$.
1992 Bulgaria National Olympiad, Problem 1
Through a random point $C_1$ from the edge $DC$ of the regular tetrahedron $ABCD$ is drawn a plane, parallel to the plane $ABC$. The plane constructed intersects the edges $DA$ and $DB$ at the points $A_1,B_1$ respectively. Let the point $H$ is the midpoint of the altitude through the vertex $D$ of the tetrahedron $DA_1B_1C_1$ and $M$ is the center of gravity (barycenter) of the triangle $ABC_1$. Prove that the measure of the angle $HMC$ doesn’t depend on the position of the point $C_1$. [i](Ivan Tonov)[/i]
2013 IMC, 3
Suppose that $\displaystyle{{v_1},{v_2},...,{v_d}}$ are unit vectors in $\displaystyle{{{\Bbb R}^d}}$. Prove that there exists a unitary vector $\displaystyle{u}$ such that $\displaystyle{\left| {u \cdot {v_i}} \right| \leq \frac{1}{{\sqrt d }}}$ for $\displaystyle{i = 1,2,...,d}$.
[b]Note.[/b] Here $\displaystyle{ \cdot }$ denotes the usual scalar product on $\displaystyle{{{\Bbb R}^d}}$.
[i]Proposed by Tomasz Tkocz, University of Warwick.[/i]
1967 IMO Longlists, 40
Prove that a tetrahedron with just one edge length greater than $1$ has volume at most $ \frac{1}{8}.$
2016 BMT Spring, 12
Consider a solid hemisphere of radius $1$. Find the distance from its center of mass to the base.
1952 Moscow Mathematical Olympiad, 210
Prove that if all faces of a parallelepiped are equal parallelograms, they are rhombuses.
IV Soros Olympiad 1997 - 98 (Russia), 11.9
Cut pyramid $ABCD$ into $8$ equal and similar pyramids, if:
a) $AB = BC = CD$, $\angle ABC =\angle BCD = 90^o$, dihedral angle at edge $BC$ is right
b) all plane angles at vertex $B$ are right and $AB = BC = BD\sqrt2$.
Note. Whether there are other types of triangular pyramids that can be cut into any number similar to the original pyramids (their number is not necessarily $8$ and the pyramids are not necessarily equal to each other) is currently unknown
2005 Purple Comet Problems, 2
We glue together $990$ one inch cubes into a $9$ by $10$ by $11$ inch rectangular solid. Then we paint the outside of the solid. How many of the original $990$ cubes have just one of their sides painted?
1985 Iran MO (2nd round), 3
Find the angle between two common sections of the page $2x+y-z=0$ and the cone $4x^2-y^2+3z^2=0.$
2002 USAMTS Problems, 4
The vertices of a cube have coordinates $(0,0,0),(0,0,4),(0,4,0),(0,4,4),(4,0,0)$,$(4,0,4),(4,4,0)$, and $(4,4,4)$. A plane cuts the edges of this cube at the points $(0,2,0),(1,0,0),(1,4,4)$, and two other points. Find the coordinates of the other two points.
1957 Czech and Slovak Olympiad III A, 2
Consider a (right) square pyramid $ABCDV$ with the apex $V$ and the base (square) $ABCD$. Denote $d=AB/2$ and $\varphi$ the dihedral angle between planes $VAD$ and $ABC$.
(1) Consider a line $XY$ connecting the skew lines $VA$ and $BC$, where $X$ lies on line $VA$ and $Y$ lies on line $BC$. Describe a construction of line $XY$ such that the segment $XY$ is of the smallest possible length. Compute the length of segment $XY$ in terms of $d,\varphi$.
(2) Compute the distance $v$ between points $V$ and $X$ in terms of $d,\varphi.$
1971 IMO Longlists, 28
All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$.
[b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length;
[b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.
2005 District Olympiad, 2
Let $ABCD$ and $ABEF$ be two squares situated in two perpendicular planes and let $O$ be the intersection of the lines $AE$ and $BF$. If $AB=4$ compute:
a) the distance from $B$ to the line of intersection between the planes $(DOC)$ and $(DAF)$;
b) the distance between the lines $AC$ and $BF$.
Gheorghe Țițeica 2025, P3
Two regular pentagons $ABCDE$ and $AEKPL$ are given in space, such that $\angle DAK = 60^{\circ}$. Let $M$, $N$ and $S$ be the midpoints of $AE$, $CD$ and $EK$. Prove that:
[list=a]
[*] $\triangle NMS$ is a right triangle;
[*] planes $(ACK)$ and $(BAL)$ are perpendicular.
[/list]
[i]Ukraine Olympiad[/i]