Found problems: 2265
1974 Poland - Second Round, 3
Prove that the orthogonal projections of the vertex $ D $ of the tetrahedron $ ABCD $ onto the bisectors of the internal and external dihedral angles at the edges $ \overline{AB} $, $ \overline{BC} $ and $ \overline{CA} $ belong to one plane .
2010 AMC 10, 20
A fly trapped inside a cubical box with side length $ 1$ meter decides to relieve its boredom by visiting each corner of the box. It will begin and end in the same corner and visit each of the other corners exactly once. To get from a corner to any other corner, it will either fly or crawl in a straight line. What is the maximum possible length, in meters, of its path?
$ \textbf{(A)}\ 4 \plus{} 4\sqrt2 \qquad \textbf{(B)}\ 2 \plus{} 4\sqrt2 \plus{} 2\sqrt3 \qquad \textbf{(C)}\ 2 \plus{} 3\sqrt2 \plus{} 3\sqrt3 \qquad \textbf{(D)}\ 4\sqrt2 \plus{} 4\sqrt3 \\ \textbf{(E)}\ 3\sqrt2 \plus{} 5\sqrt3$
2000 Denmark MO - Mohr Contest, 3
A [i]Georg Mohr[/i] cube is a cube with six faces printed respectively $G, E, O, R, M$ and $H$. Peter has nine identical Georg Mohr dice. Is it possible to stack them on top of each other for a tower there on each of the four pages in some order show the letters $G\,\, E \,\, O \,\, R \,\, G \,\, M \,\, O \,\, H \,\, R$?
2021/2022 Tournament of Towns, P4
Given is a segment $AB$. Three points $X, Y, Z$ are picked in the space so that $ABX$ is an equilateral triangle and $ABYZ$ is a square. Prove that the orthocenters of all triangles $XYZ$ obtained in this way belong to a fixed circle.
[i]Alexandr Matveev[/i]
Kyiv City MO 1984-93 - geometry, 1993.11.3
Two cubes are inscribed in a sphere of radius $R$. Calculate the sum of squares of all segments connecting the vertices of one cube with the vertices of the other cube
1973 IMO Shortlist, 1
Let a tetrahedron $ABCD$ be inscribed in a sphere $S$. Find the locus of points $P$ inside the sphere $S$ for which the equality
\[\frac{AP}{PA_1}+\frac{BP}{PB_1}+\frac{CP}{PC_1}+\frac{DP}{PD_1}=4\]
holds, where $A_1,B_1, C_1$, and $D_1$ are the intersection points of $S$ with the lines $AP,BP,CP$, and $DP$, respectively.
1966 IMO Longlists, 7
For which arrangements of two infinite circular cylinders does their intersection lie in a plane?
2000 Tournament Of Towns, 3
In each lateral face of a pentagonal prism at least one of the four angles is equal to $f$. Find all possible values of $f$.
(A Shapovalov)
2021 Alibaba Global Math Competition, 10
In $\mathbb{R}^3$, for a rectangular box $\Delta$, let $10\Delta$ be the box with the same center as $\Delta$ but dilated by $10$. For example, if $\Delta$ is an $1 \times 1 \times 10$ box (hence with Lebesgue measure $10$), then $10\Delta$ is the $10 \times 10 \times 100$ box with the same center and orientation as $\Delta$.
\medskip
If two rectangular boxes $\Delta_1$ and $\Delta_2$ satisfy $\Delta_1 \subset 10\Delta_2$ and $\Delta_2 \subset 10 \Delta_1$, we say that they are [i]almost identical[/i].
Find the largest real number $a$ such that the following holds for some $C=C(a)>0$:
For every positive integer $N$ and every collection $S$ of $1 \times 1 \times N$ boxes in $\mathbb{R}^3$, assuming that (i) $\vert S\vert=N$, (ii) every pair of boxes $(\Delta_1,\Delta_2)$ taken from $S$ are not almost identical, and (iii) the long edge of each box in $S$ forms an angle $\frac{\pi}{4}$ against the $xy$-plane. Then the volume
\[\left\vert \bigcup_{\Delta \in S} \Delta\right\vert \ge CN^a.\]
2020 Stanford Mathematics Tournament, 5
Find the smallest possible number of edges in a convex polyhedron that has an odd number of edges in total has an even number of edges on each face.
1999 Poland - Second Round, 2
A cube of edge $2$ with one of the corner unit cubes removed is called a [i]piece[/i].
Prove that if a cube $T$ of edge $2^n$ is divided into $2^{3n}$ unit cubes and one of the unit cubes is removed, then the rest can be cut into [i]pieces[/i].
2016 Romania National Olympiad, 1
The vertices of a prism are colored using two colors, so that each lateral edge has its vertices differently colored. Consider all the segments that join vertices of the prism and are not lateral edges. Prove that the number of such segments with endpoints differently colored is equal to the number of such segments with endpoints of the same color.
2009 Romanian Master of Mathematics, 3
Given four points $ A_1, A_2, A_3, A_4$ in the plane, no three collinear, such that
\[ A_1A_2 \cdot A_3 A_4 \equal{} A_1 A_3 \cdot A_2 A_4 \equal{} A_1 A_4 \cdot A_2 A_3,
\]
denote by $ O_i$ the circumcenter of $ \triangle A_j A_k A_l$ with $ \{i,j,k,l\} \equal{} \{1,2,3,4\}.$ Assuming $ \forall i A_i \neq O_i ,$ prove that the four lines $ A_iO_i$ are concurrent or parallel.
[i]Nikolai Ivanov Beluhov, Bulgaria[/i]
1953 Moscow Mathematical Olympiad, 240
Let $AB$ and $A_1B_1$ be two skew segments, $O$ and $O_1$ their respective midpoints. Prove that $OO_1$ is shorter than a half sum of $AA_1$ and $BB_1$.
Kyiv City MO Seniors 2003+ geometry, 2003.11.3
Let $x_1, x_2, x_3, x_4$ be the distances from an arbitrary point inside the tetrahedron to the planes of its faces, and let $h_1, h_2, h_3, h_4$ be the corresponding heights of the tetrahedron. Prove that $$\sqrt{h_1+h_2+h_3+h_4} \ge \sqrt{x_1}+\sqrt{x_2}+\sqrt{x_3}+\sqrt{x_4}$$
(Dmitry Nomirovsky)
1988 IMO Longlists, 12
Show that there do not exist more than $27$ half-lines (or rays) emanating from the origin in the $3$-dimensional space, such that the angle between each pair of rays is $\geq \frac{\pi}{4}$.
2015 AMC 10, 17
The centers of the faces of the right rectangular prism shown below are joined to create an octahedron, What is the volume of the octahedron?
[asy]
import three; size(2inch);
currentprojection=orthographic(4,2,2);
draw((0,0,0)--(0,0,3),dashed);
draw((0,0,0)--(0,4,0),dashed);
draw((0,0,0)--(5,0,0),dashed);
draw((5,4,3)--(5,0,3)--(5,0,0)--(5,4,0)--(0,4,0)--(0,4,3)--(0,0,3)--(5,0,3));
draw((0,4,3)--(5,4,3)--(5,4,0));
label("3",(5,0,3)--(5,0,0),W);
label("4",(5,0,0)--(5,4,0),S);
label("5",(5,4,0)--(0,4,0),SE);
[/asy]
$\textbf{(A) } \dfrac{75}{12}
\qquad\textbf{(B) } 10
\qquad\textbf{(C) } 12
\qquad\textbf{(D) } 10\sqrt2
\qquad\textbf{(E) } 15
$
1996 All-Russian Olympiad, 5
At the vertices of a cube are written eight pairwise distinct natural numbers, and on each of its edges is written the greatest common divisor of the numbers at the endpoints of the edge. Can the sum of the numbers written at the vertices be the same as the sum of the numbers written at the edges?
[i]A. Shapovalov[/i]
1984 Czech And Slovak Olympiad IIIA, 1
A cube $A_1A_2A_3A_4A_5A_6A_7A_8$ is given in space. We will mark its center with the letter $S$ (intersection of solid diagonals). Find all natural numbers $k$ for which there exists a plane not containing the point $S$ and intersecting just $k$ of the rays $SA_1, SA_2, .. SA_8$
2022/2023 Tournament of Towns, P6
The midpoints of all heights of a certain tetrahedron lie on its inscribed sphere. Is this tetrahedron necessarily regular then?
1988 Balkan MO, 3
Let $ABCD$ be a tetrahedron and let $d$ be the sum of squares of its edges' lengths. Prove that the tetrahedron can be included in a region bounded by two parallel planes, the distances between the planes being at most $\frac{\sqrt{d}}{2\sqrt{3}}$
2003 Romania National Olympiad, 4
In tetrahedron $ ABCD$, $ G_1,G_2$ and $ G_3$ are barycenters of the faces $ ACD,ABD$ and $ BCD$ respectively.
(a) Prove that the straight lines $ BG_1,CG_2$ and $ AG_3$ are concurrent.
(b) Knowing that $ AG_3\equal{}8,BG_1\equal{}12$ and $ CG_2\equal{}20$ compute the maximum possible value of the volume of $ ABCD$.
2004 USAMTS Problems, 2
For the equation \[ (3x^2+y^2-4y-17)^3-(2x^2+2y^2-4y-6)^3=(x^2-y^2-11)^3, \]
determine its solutions $(x, y)$ where both $x$ and $y$ are integers. Prove that your answer lists all the integer solutions.
2008 USAPhO, 2
A uniform pool ball of radius $r$ and mass $m$ begins at rest on a pool table. The ball is given a horizontal impulse $J$ of fixed magnitude at a distance $\beta r$ above its center, where $-1 \le \beta \le 1$. The coefficient of kinetic friction between the ball and the pool table is $\mu$. You may assume the ball and the table are perfectly rigid. Ignore effects due to deformation. (The moment of inertia about the center of mass of a solid sphere of mass $m$ and radius $r$ is $I_{cm} = \frac{2}{5}mr^2$.)
[asy]
size(250);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
filldraw(circle((0,0),1),gray(.8));
draw((-3,-1)--(3,-1));
draw((-2.4,0.1)--(-2.4,0.6),EndArrow);
draw((-2.5,0)--(2.5,0),dashed);
draw((-2.75,0.7)--(-0.8,0.7),EndArrow);
label("$J$",(-2.8,0.7),W);
label("$\beta r$",(-2.3,0.35),E);
draw((0,-1.5)--(0,1.5),dashed);
draw((1.7,-0.1)--(1.7,-0.9),BeginArrow,EndArrow);
label("$r$",(1.75,-0.5),E);
[/asy]
(a) Find an expression for the final speed of the ball as a function of $J$, $m$, and $\beta$.
(b) For what value of $\beta$ does the ball immediately begin to roll without slipping, regardless of the value of $\mu$?
1948 Putnam, A2
Two spheres in contact have a common tangent cone. These three surfaces divide the space into various parts, only one of which is bounded by all three surfaces, it is "ring-shaped." Being given the radii of the spheres, $r$ and $R$, find the volume of the "ring-shaped" part. (The desired expression is a rational function of $r$ and $R.$)