This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

1996 Austrian-Polish Competition, 5

A sphere $S$ divides every edge of a convex polyhedron $P$ into three equal parts. Show that there exists a sphere tangent to all the edges of $P$.

1982 National High School Mathematics League, 9

In tetrahedron $SABC$, $\angle ASB=\frac{\pi}{2}, \angle ASC=\alpha(0<\alpha<\frac{\pi}{2}), \angle BSC=\beta(0<\beta<\frac{\pi}{2})$. Let $\theta=A-SC-B$, prove that $\theta=-\arccos(\cot\alpha\cdot\cot\beta)$.

1998 Spain Mathematical Olympiad, 2

Find all four-digit numbers which are equal to the cube of the sum of their digits.

1971 IMO, 1

All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$. [b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length; [b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.

2009 Estonia Team Selection Test, 3

Find all natural numbers $n$ for which there exists a convex polyhedron satisfying the following conditions: (i) Each face is a regular polygon. (ii) Among the faces, there are polygons with at most two different numbers of edges. (iii) There are two faces with common edge that are both $n$-gons.

PEN H Problems, 24

Prove that if $n$ is a positive integer such that the equation \[x^{3}-3xy^{2}+y^{3}=n.\] has a solution in integers $(x,y),$ then it has at least three such solutions. Show that the equation has no solutions in integers when $n=2891$.

1967 All Soviet Union Mathematical Olympiad, 086

a) A lamp of a lighthouse enlights an angle of $90$ degrees. Prove that you can turn the lamps of four arbitrary posed lighthouses so, that all the plane will be enlightened. b) There are eight lamps in eight points of the space. Each can enlighten an octant (three-faced space polygon with three mutually orthogonal edges). Prove that you can turn them so, that all the space will be enlightened.

1985 IMO Longlists, 28

[i]a)[/i] Let $M$ be the set of the lengths of the edges of an octahedron whose sides are congruent quadrangles. Prove that $M$ has at most three elements. [i]b)[/i] Let an octahedron whose sides are congruent quadrangles be given. Prove that each of these quadrangles has two equal sides meeting at a common vertex.

1992 Tournament Of Towns, (357) 6

Consider a polyhedron having $100$ edges. (a) Find the maximal possible number of its edges which can be intersected by a plane (not containing any vertices of the polyhedron) if the polyhedron is convex. (b) Prove that for a non-convex polyhedron this number i. can be as great as $96$, ii. cannot be as great as $100$. (A Andjans, Riga

2009 Tournament Of Towns, 3

Every edge of a tetrahedron is tangent to a given sphere. Prove that the three line segments joining the points of tangency of the three pairs of opposite edges of the tetrahedron are concurrent. [i](7 points)[/i]

2013 Princeton University Math Competition, 7

A tetrahedron $ABCD$ satisfies $AB=6$, $CD=8$, and $BC=DA=5$. Let $V$ be the maximum value of $ABCD$ possible. If we can write $V^4=2^n3^m$ for some integers $m$ and $n$, find $mn$.

1978 IMO Shortlist, 14

Prove that it is possible to place $2n(2n + 1)$ parallelepipedic (rectangular) pieces of soap of dimensions $1 \times 2 \times (n + 1)$ in a cubic box with edge $2n + 1$ if and only if $n$ is even or $n = 1$. [i]Remark[/i]. It is assumed that the edges of the pieces of soap are parallel to the edges of the box.

1982 Austrian-Polish Competition, 8

Let $P$ be a point inside a regular tetrahedron ABCD with edge length $1$. Show that $$d(P,AB)+d(P,AC)+d(P,AD)+d(P,BC)+d(P,BD)+d(P,CD) \ge \frac{3}{2} \sqrt2$$ , with equality only when $P$ is the centroid of $ABCD$. Here $d(P,XY)$ denotes the distance from point $P$ to line $XY$.

2008 ITest, 25

A cube has edges of length $120\text{ cm}$. The cube gets chopped up into some number of smaller cubes, all of equal size, such that each edge of one of the smaller cubes has an integer length. One of those smaller cubes is then chopped up into some number of $\textit{even smaller}$ cubes, all of equal size. If the edge length of one of those $\textit{even smaller}$ cubes is $n\text{ cm}$, where $n$ is an integer, find the number of possible values of $n$.

2010 AIME Problems, 9

Let $ (a,b,c)$ be the real solution of the system of equations $ x^3 \minus{} xyz \equal{} 2$, $ y^3 \minus{} xyz \equal{} 6$, $ z^3 \minus{} xyz \equal{} 20$. The greatest possible value of $ a^3 \plus{} b^3 \plus{} c^3$ can be written in the form $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.

2018 AMC 10, 4

Tags: 3d geometry
4. A three-dimensional rectangular box with dimensions $X$, $Y$, and $Z$ has faces whose surface areas are $24$, $24$, $48$, $48$, $72$, and $72$ square units. What is $X + Y + Z$? $\textbf{(A)} \text{ 18} \qquad \textbf{(B)} \text{ 22} \qquad \textbf{(C)} \text{ 24} \qquad \textbf{(D)} \text{ 30} \qquad \textbf{(E)} \text{ 36}$

1969 IMO Shortlist, 32

$(GDR 4)$ Find the maximal number of regions into which a sphere can be partitioned by $n$ circles.

1997 All-Russian Olympiad, 3

A sphere inscribed in a tetrahedron touches one face at the intersection of its angle bisectors, a second face at the intersection of its altitudes, and a third face at the intersection of its medians. Show that the tetrahedron is regular. [i]N. Agakhanov[/i]

2011 Benelux, 3

If $k$ is an integer, let $\mathrm{c}(k)$ denote the largest cube that is less than or equal to $k$. Find all positive integers $p$ for which the following sequence is bounded: $a_0 = p$ and $a_{n+1} = 3a_n-2\mathrm{c}(a_n)$ for $n \geqslant 0$.

1962 German National Olympiad, 5

Given a plane $P$ and two fixed points $A$ and $B$ that do not lie in this plane. Denote two points $A'$ and $B'$ on plane $P$ and $M ,N$ the midpoints of the segments $AA'$, $BB'$. a) Determine the locus of the midpoint of the segment MN if the points are $A'$ and $B'$ move arbitrarily in plane $P$. b) A circle $O$ is considered in the plane $P$. Determine the locus $L$ of the midpoint of the segment $MN$ if the points $A'$ and $B'$ lie on the circle $O$ or inside it . c) $A'$ is assumed to be fixed on the circle $O$ or inside it and $B'$ is assumed to be movable inside it , except for $O$. Determine the locus of the point $B'$ such the above certain locus $L$ remains the same . Note: For b) and c) the following cases should be considered: 1. $A'$ and $B'$ are different, 2. $A'$ and $B'$ coincide.

1987 Bulgaria National Olympiad, Problem 3

Let $MABCD$ be a pyramid with the square $ABCD$ as the base, in which $MA=MD$, $MA^2+AB^2=MB^2$ and the area of $\triangle ADM$ is equal to $1$. Determine the radius of the largest ball that is contained in the given pyramid.

2008 Mexico National Olympiad, 2

We place $8$ distinct integers in the vertices of a cube and then write the greatest common divisor of each pair of adjacent vertices on the edge connecting them. Let $E$ be the sum of the numbers on the edges and $V$ the sum of the numbers on the vertices. a) Prove that $\frac23E\le V$. b) Can $E=V$?

2018 District Olympiad, 3

Let $ABCDA'B'C'D'$ be the rectangular parallelepiped. Let $M, N, P$ be midpoints of the edges $[AB], [BC],[BB']$ respectively . Let $\{O\} = A'N \cap C'M$. a) Prove that the points $D, O, P$ are collinear. b) Prove that $MC' \perp (A'PN)$ if and only if $ABCDA'B'C'D'$ is a cube.

2005 USAMTS Problems, 5

Sphere $S$ is inscribed in cone $C$. The height of $C$ equals its radius, and both equal $12+12\sqrt2$. Let the vertex of the cone be $A$ and the center of the sphere be $B$. Plane $P$ is tangent to $S$ and intersects $\overline{AB}$. $X$ is the point on the intersection of $P$ and $C$ closest to $A$. Given that $AX=6$, find the area of the region of $P$ enclosed by the intersection of $C$ and $P$.

1982 Tournament Of Towns, (028) 2

Does there exist a polyhedron (not necessarily convex) which could have the following complete list of edges? $AB, AC, BC, BD, CD, DE, EF, EG, FG, FH, GH, AH$. [img]http://1.bp.blogspot.com/-wTdNfQHG5RU/XVk1Bf4wpqI/AAAAAAAAKhA/8kc6u9KqOgg_p1CXim2LZ1ANFXFiWgnYACK4BGAYYCw/s1600/TOT%2B1982%2BAutum%2BS2.png[/img]