Found problems: 15925
2018 Saudi Arabia IMO TST, 3
Consider the function $f (x) = (x - F_1)(x - F_2) ...(x -F_{3030})$ with $(F_n)$ is the Fibonacci sequence, which defined as $F_1 = 1, F_2 = 2$, $F_{n+2 }=F_{n+1} + F_n$, $n \ge 1$. Suppose that on the range $(F_1, F_{3030})$, the function $|f (x)|$ takes on the maximum value at $x = x_0$. Prove that $x_0 > 2^{2018}$.
1991 Vietnam National Olympiad, 1
Find all functions $f: \mathbb{R}\to\mathbb{R}$ satisfying:
$\frac{f(xy)+f(xz)}{2} - f(x)f(yz) \geq \frac{1}{4}$ for all $x,y,z \in \mathbb{R}$
1984 Balkan MO, 4
Let $a,b,c$ be positive real numbers. Find all real solutions $(x,y,z)$ of the system:
\[ ax+by=(x-y)^{2}
\\ by+cz=(y-z)^{2}
\\ cz+ax=(z-x)^{2}\]
2020 Stars of Mathematics, 1
Let $a_1,a_2,a_3,a_4$ be positive real numbers satisfying \[\sum_{i<j}a_ia_j=1.\]Prove that \[\sum_{\text{sym}}\frac{a_1a_2}{1+a_3a_4}\geq\frac{6}{7}.\][i]* * *[/i]
2006 Moldova National Olympiad, 10.5
Let $x_{1}$, $x_{2}$, $\ldots$, $x_{n}$ be $n$ real numbers in $\left(\frac{1}{4},\frac{2}{3}\right)$. Find the minimal value of the expression: \[ \log_{\frac 32x_{1}}\left(\frac{1}{2}-\frac{1}{36x_{2}^{2}}\right)+\log_{\frac 32x_{2}}\left(\frac{1}{2}-\frac{1}{36x_{3}^{2}}\right)+\cdots+ \log_{\frac 32x_{n}}\left(\frac{1}{2}-\frac{1}{36x_{1}^{2}}\right). \]
2016 Saudi Arabia BMO TST, 1
Given two non-constant polynomials $P(x),Q(x)$ with real coefficients. For a real number $a$, we define
$$P_a= \{z \in C : P(z) = a\}, Q_a =\{z \in C : Q(z) = a\}$$ Denote by $K$ the set of real numbers $a$ such that $P_a = Q_a$.
Suppose that the set $K$ contains at least two elements, prove that $P(x) = Q(x)$.
2013 BMT Spring, 2
A point $P$ is given on the curve $x^4+y^4=1$. Find the maximum distance from the point $P$ to the origin.
2016 China Team Selection Test, 6
Find all functions $f: \mathbb R^+ \rightarrow \mathbb R^+$ satisfying the following condition: for any three distinct real numbers $a,b,c$, a triangle can be formed with side lengths $a,b,c$, if and only if a triangle can be formed with side lengths $f(a),f(b),f(c)$.
2013 District Olympiad, 4
Let $n\in {{\mathbb{N}}^{*}}$. Prove that $2\sqrt{{{2}^{n}}}\cos \left( n\arccos \frac{\sqrt{2}}{4} \right)$ is an odd integer.
2002 India IMO Training Camp, 12
Let $a,b$ be integers with $0<a<b$. A set $\{x,y,z\}$ of non-negative integers is [i]olympic[/i] if $x<y<z$ and if $\{z-y,y-x\}=\{a,b\}$. Show that the set of all non-negative integers is the union of pairwise disjoint olympic sets.
Math Hour Olympiad, Grades 5-7, 2014.57
[u]Round 1[/u]
[b]p1.[/b] Three snails – Alice, Bobby, and Cindy – were racing down a road.
Whenever one snail passed another, it waved at the snail it passed.
During the race, Alice waved $3$ times and was waved at twice.
Bobby waved $4$ times and was waved at $3$ times.
Cindy waved $5$ times. How many times was she waved at?
[b]p2.[/b] Sherlock and Mycroft are playing Battleship on a $4\times 4$ grid. Mycroft hides a single $3\times 1$ cruiser somewhere on the board. Sherlock can pick squares on the grid and fire upon them. What is the smallest number of shots Sherlock has to fire to guarantee at least one hit on the cruiser?
[b]p3.[/b] Thirty girls – $13$ of them in red dresses and $17$ in blue dresses – were dancing in a circle, hand-in-hand. Afterwards, each girl was asked if the girl to her right was in a blue dress. Only the girls who had both neighbors in red dresses or both in blue dresses told the truth. How many girls could have answered “Yes”?
[b]p4.[/b] Herman and Alex play a game on a $5\times 5$ board. On his turn, a player can claim any open square as his territory. Once all the squares are claimed, the winner is the player whose territory has the longer border. Herman goes first. If both play their best, who will win, or will the game end in a draw?
[img]https://cdn.artofproblemsolving.com/attachments/5/7/113d54f2217a39bac622899d3d3eb51ec34f1f.png[/img]
[b]p5.[/b] Is it possible to find $2014$ distinct positive integers whose sum is divisible by each of them?
[u]Round 2[/u]
[b]p6.[/b] Hermione and Ron play a game that starts with 129 hats arranged in a circle. They take turns magically transforming the hats into animals. On each turn, a player picks a hat and chooses whether to change it into a badger or into a raven. A player loses if after his or her turn there are two animals of the same species right next to each other. Hermione goes first. Who loses?
[b]p7.[/b] Three warring states control the corner provinces of the island whose map is shown below.
[img]https://cdn.artofproblemsolving.com/attachments/e/a/4e2f436be1dcd3f899aa34145356f8c66cda82.png[/img]
As a result of war, each of the remaining $18$ provinces was occupied by one of the states. None of the states was able to occupy any province on the coast opposite their corner. The states would like to sign a peace treaty. To do this, they each must send ambassadors to a place where three provinces, one controlled by each state, come together. Prove that they can always find such a place to meet.
For example, if the provinces are occupied as shown here, the squares mark possible meeting spots.
[img]https://cdn.artofproblemsolving.com/attachments/e/b/81de9187951822120fc26024c1c1fbe2138737.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Brazil National Olympiad, 6
Find all surjective functions $f\colon (0,+\infty) \to (0,+\infty)$ such that $2x f(f(x)) = f(x)(x+f(f(x)))$ for all $x>0$.
2015 Kyiv Math Festival, P1
Prove that there exist infinitely many pairs of real numbers $(x,y)$ such that $\sqrt{1+2x-xy}+\sqrt{1+2y-xy}=2.$
2009 Romania National Olympiad, 3
Find all functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that verify the relation
$$ f\left( x^3+y^3 \right) =xf\left( y^2 \right) + yf\left( x^2 \right) , $$
for all real numbers $ x,y. $
1969 IMO Shortlist, 14
$(CZS 3)$ Let $a$ and $b$ be two positive real numbers. If $x$ is a real solution of the equation $x^2 + px + q = 0$ with real coefficients $p$ and $q$ such that $|p| \le a, |q| \le b,$ prove that $|x| \le \frac{1}{2}(a +\sqrt{a^2 + 4b})$ Conversely, if $x$ satisfies the above inequality, prove that there exist real numbers $p$ and
$q$ with $|p|\le a, |q|\le b$ such that $x$ is one of the roots of the equation $x^2+px+ q = 0.$
1992 IMO Longlists, 33
Let $a, b, c$ be positive real numbers and $p, q, r$ complex numbers. Let $S$ be the set of all solutions $(x, y, z)$ in $\mathbb C$ of the system of simultaneous equations
\[ax + by + cz = p,\]\[ax2 + by2 + cz2 = q,\]\[ax3 + bx3 + cx3 = r.\]
Prove that $S$ has at most six elements.
1999 Croatia National Olympiad, Problem 3
Let $(a_n)$ be defined by $a_1=a_2=1$ and $a_n=a_{n-1}+a_{n-2}$ for $n>2$. Compute the sum $\frac{a_1}2+\frac{a_2}{2^2}+\frac{a_3}{2^3}+\ldots$.
Russian TST 2021, P3
Let $R^+$ be the set of positive real numbers. Determine all functions $f:R^+$ $\rightarrow$ $R^+$ such that for all positive real numbers $x$ and $y:$
\[f(x+f(xy))+y=f(x)f(y)+1\]
[i]Ukraine[/i]
1979 AMC 12/AHSME, 26
The function $f$ satisfies the functional equation \[f(x) +f(y) = f(x + y ) - xy - 1\] for every pair $x,~ y$ of real numbers. If $f( 1) = 1$, then the number of integers $n \neq 1$ for which $f ( n ) = n$ is
$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{infinite}$
2024 International Zhautykov Olympiad, 4
Ten distinct positive real numbers are given and the sum of each pair is written (So 45 sums). Between these sums there are 5 equal numbers. If we calculate product of each pair, find the biggest number $k$ such that there may be $k$ equal numbers between them.
2022 Irish Math Olympiad, 10
10. Let $n \ge 5$ be an odd number and let $r$ be an integer such that $1\le r \le (n-1)/2$. IN a sports tournament, $n$ players take part in a series of contests. In each contest, $2r+1$ players participate, and the scores obtained by the players are the numbers
$$-r, -(r-1),\cdots, -1, 0, 1 \cdots, r-1, r$$
in some order. Each possible subset of $2r+1$ players takes part together in exactly one contest. let the final score of player $i$ be $S_i$, for each $i=1, 2,\cdots,n$. Define $N$ to be the smallest difference between the final scores of two players, i.e.,
$$N = \min_{i<j}|S_i - S_j|.$$
Determine, with proof, the maximum possible value of $N$.
2016 PUMaC Team, 4
For x > 1, let $f(x) = log_2(x + log_2(x + log_2(x +...)))$. Compute $\Sigma_{k=2}^{10} f^{-1}(k)$
2007 ISI B.Math Entrance Exam, 3
For a natural number $n>1$ , consider the $n-1$ points on the unit circle $e^{\frac{2\pi ik}{n}}\ (k=1,2,...,n-1) $ . Show that the product of the distances of these points from $1$ is $n$.
1999 National Olympiad First Round, 34
For how many primes $ p$, there exits unique integers $ r$ and $ s$ such that for every integer $ x$ $ x^{3} \minus{} x \plus{} 2\equiv \left(x \minus{} r\right)^{2} \left(x \minus{} s\right)\pmod p$?
$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ \text{None}$
1990 IMO Longlists, 48
Prove that $\sqrt 2 +\sqrt 3 +\sqrt{1990}$ is irrational.