This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2007 Nicolae Coculescu, 3

Consider a function $ f:\mathbb{R}\longrightarrow\mathbb{R} . $ Show that: [b]a)[/b] $ f $ is nondecreasing, if $ f+g $ is nondecreasing for any increasing function $ g:\mathbb{R}\longrightarrow\mathbb{R} . $ [b]b)[/b] $ f $ is nondecreasing, if $ f\cdot g $ is nondecreasing for any increasing function $ g:\mathbb{R}\longrightarrow\mathbb{R} . $ [i]Cristian Mangra[/i]

2014 Peru Iberoamerican Team Selection Test, P4

Tags: algebra
Determine the minimum value of $$x^{2014} + 2x^{2013} + 3x^{2012} + 4x^{2011} +\ldots + 2014x + 2015$$ where $x$ is a real number.

2007 Stars of Mathematics, 1

Prove that there exists just one function $ f:\mathbb{N}^2\longrightarrow\mathbb{N} $ which simultaneously satisfies: $ \text{(1)}\quad f(m,n)=f(n,m),\quad\forall m,n\in\mathbb{N} $ $ \text{(2)}\quad f(n,n)=n,\quad\forall n\in\mathbb{N} $ $ \text{(3)}\quad n>m\implies (n-m)f(m,n)=nf(m,n-m), \quad\forall m,n\in\mathbb{N} $

2009 Tuymaada Olympiad, 4

The sum of several non-negative numbers is not greater than 200, while the sum of their squares is not less than 2500. Prove that among them there are four numbers whose sum is not less than 50. [i]Proposed by A. Khabrov[/i]

2004 Romania Team Selection Test, 6

Let $a,b$ be two positive integers, such that $ab\neq 1$. Find all the integer values that $f(a,b)$ can take, where \[ f(a,b) = \frac { a^2+ab+b^2} { ab- 1} . \]

1984 All Soviet Union Mathematical Olympiad, 382

Positive $x,y,z$ satisfy a system: $\begin{cases} x^2 + xy + y^2/3= 25 \\ y^2/ 3 + z^2 = 9 \\ z^2 + zx + x^2 = 16 \end{cases}$ Find the value of expression $xy + 2yz + 3zx$.

2007 Moldova National Olympiad, 11.6

Tags: algebra
Define $(b_{n})$ to be: $b_{0}=12$, $b_{1}=\frac{\sqrt{3}}{2}$ adn $b_{n+1}+b_{n-1}=b_{n}\cdot\sqrt{3}$. Find $b_{0}+b_{1}+\dots+b_{2007}$. Note. Maybe this seems too easy, but I want to post all the problems...

2004 Harvard-MIT Mathematics Tournament, 9

Find the positive constant $c_0$ such that the series \[ \displaystyle\sum_{n = 0}^{\infty} \dfrac {n!}{(cn)^n} \] converges for $c>c_0$ and diverges for $0<c<c_0$.

2023 Princeton University Math Competition, B2

Tags: algebra
The sum $$\sum_{m=1}^{2023} \frac{2m}{m^4+m^2+1}$$ can be expressed as $\tfrac{a}{b}$ for relatively prime positive integers $a,b.$ Find the remainder when $a+b$ is divided by $1000.$

1964 AMC 12/AHSME, 25

The set of values of $m$ for which $x^2+3xy+x+my-m$ has two factors, with integer coefficients, which are linear in $x$ and $y$, is precisely: $ \textbf{(A)}\ 0, 12, -12\qquad\textbf{(B)}\ 0, 12\qquad\textbf{(C)}\ 12, -12\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 0 $

2017 Azerbaijan JBMO TST, 1

Let $x,y,z,t$ be positive numbers.Prove that $\frac{xyzt}{(x+y)(z+t)}\leq\frac{(x+z)^2(y+t)^2}{4(x+y+z+t)^2}.$

1992 Yugoslav Team Selection Test, Problem 2

Periodic sequences $(a_n),(b_n),(c_n)$ and $(d_n)$ satisfy the following conditions: $$a_{n+1}=a_n+b_n,\enspace\enspace b_{n+1}=b_n+c_n,$$ $$c_{n+1}=c_n+d_n,\enspace\enspace d_{n+1}=d_n+a_n,$$ for $n=1,2,\ldots$. Prove that $a_2=b_2=c_2=d_2=0$.

1996 Turkey Team Selection Test, 3

Tags: limit , algebra
Determine all ordered pairs of positive real numbers $(a, b)$ such that every sequence $(x_{n})$ satisfying $\lim_{n \rightarrow \infty}{(ax_{n+1} - bx_{n})} = 0$ must have $\lim_{n \rightarrow \infty} x_n = 0$.

1962 IMO Shortlist, 4

Solve the equation $\cos^2{x}+\cos^2{2x}+\cos^2{3x}=1$

2024 Francophone Mathematical Olympiad, 1

Tags: game , polynomial , algebra
Let $d$ and $m$ be two fixed positive integers. Pinocchio and Geppetto know the values of $d$ and $m$ and play the following game: In the beginning, Pinocchio chooses a polynomial $P$ of degree at most $d$ with integer coefficients. Then Geppetto asks him questions of the following form "What is the value of $P(n)$?'' for $n \in \mathbb{Z}$. Pinocchio usually says the truth, but he can lie up to $m$ times. What is, as a function of $d$ and $m$, the minimal number of questions that Geppetto needs to ask to be sure to determine $P$, no matter how Pinocchio chooses to reply?

2016 Swedish Mathematical Competition, 2

Determine whether the inequality $$ \left|\sqrt{x^2+2x+5}-\sqrt{x^2-4x+8}\right|<3$$ is valid for all real numbers $x$.

2020 ABMC, Team

[u]Round 1[/u] [b]1.1.[/b] A person asks for help every $3$ seconds. Over a time period of $5$ minutes, how many times will they ask for help? [b]1.2.[/b] In a big bag, there are $14$ red marbles, $15$ blue marbles, and$ 16$ white marbles. If Anuj takes a marble out of the bag each time without replacement, how many marbles does Anuj need to remove to be sure that he will have at least $3$ red marbles? [b]1.3.[/b] If Josh has $5$ distinct candies, how many ways can he pick $3$ of them to eat? [u]Round 2[/u] [b]2.1.[/b] Annie has a circular pizza. She makes $4$ straight cuts. What is the minimum number of slices of pizza that she can make? [b]2.2.[/b] What is the sum of the first $4$ prime numbers that can be written as the sum of two perfect squares? [b]2.3.[/b] Consider a regular octagon $ABCDEFGH$ inscribed in a circle of area $64\pi$. If the length of arc $ABC$ is $n\pi$, what is $n$? [u]Round 3[/u] [b]3.1.[/b] Let $ABCDEF$ be an equiangular hexagon with consecutive sides of length $6, 5, 3, 8$, and $3$. Find the length of the sixth side. [b]3.2.[/b] Jack writes all of the integers from $ 1$ to $ n$ on a blackboard except the even primes. He selects one of the numbers and erases all of its digits except the leftmost one. He adds up the new list of numbers and finds that the sum is $2020$. What was the number he chose? [b]3.3.[/b] Our original competition date was scheduled for April $11$, $2020$ which is a Saturday. The numbers $4116$ and $2020$ have the same remainder when divided by $x$. If $x$ is a prime number, find the sum of all possible $x$. [u]Round 4[/u] [b]4.1.[/b] The polynomials $5p^2 + 13pq + cq^2$ and $5p^2 + 13pq - cq^2$ where $c$ is a positive integer can both be factored into linear binomials with integer coefficients. Find $c$. [b]4.2.[/b] In a Cartesian coordinate plane, how many ways are there to get from $(0, 0)$ to $(2, 3)$ in $7$ moves, if each move consists of a moving one unit either up, down, left, or right? [b]4.3.[/b] Bob the Builder is building houses. On Monday he finds an empty field. Each day starting on Monday, he finishes building a house at noon. On the $n$th day, there is a $\frac{n}{8}$ chance that a storm will appear at $3:14$ PM and destroy all the houses on the field. At any given moment, Bob feels sad if and only if there is exactly $1$ house left on the field that is not destroyed. The probability that he will not be sad on Friday at $6$ PM can be expressed as $p/q$ in simplest form. Find $p + q$. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2784570p24468605]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 India IMO Training Camp, 3

Starting with the triple $(1007\sqrt{2},2014\sqrt{2},1007\sqrt{14})$, define a sequence of triples $(x_{n},y_{n},z_{n})$ by $x_{n+1}=\sqrt{x_{n}(y_{n}+z_{n}-x_{n})}$ $y_{n+1}=\sqrt{y_{n}(z_{n}+x_{n}-y_{n})}$ $ z_{n+1}=\sqrt{z_{n}(x_{n}+y_{n}-z_{n})}$ for $n\geq 0$.Show that each of the sequences $\langle x_n\rangle _{n\geq 0},\langle y_n\rangle_{n\geq 0},\langle z_n\rangle_{n\geq 0}$ converges to a limit and find these limits.

1980 IMO, 2

In a rectangular coordinate system we call a horizontal line parallel to the $x$ -axis triangular if it intersects the curve with equation \[y = x^4 + px^3 + qx^2 + rx + s\] in the points $A,B,C$ and $D$ (from left to right) such that the segments $AB, AC$ and $AD$ are the sides of a triangle. Prove that the lines parallel to the $x$ - axis intersecting the curve in four distinct points are all triangular or none of them is triangular.

2025 PErA, P5

We have an $n \times n$ board, filled with $n$ rectangles aligned to the grid. The $n$ rectangles cover all the board and are never superposed. Find, in terms of $n$, the smallest value the sum of the $n$ diagonals of the rectangles can take.

2022 European Mathematical Cup, 3

Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that $$ f(x^3) + f(y)^3 + f(z)^3 = 3xyz $$ for all real numbers $x$, $y$ and $z$ with $x+y+z=0$.

2016 Chile National Olympiad, 4

Tags: algebra
The product $$\frac12 \cdot \frac24 \cdot \frac38 \cdot \frac{4}{16} \cdot ... \cdot \frac{99}{2^{99}} \cdot \frac{100}{2^{100}}$$ is written in its most simplified form. What is the last digit of the denominator?

2009 All-Russian Olympiad Regional Round, 10.1

Square trinomial $f(x)$ is such that the polynomial $(f(x)) ^3- f(x)$ has exactly three real roots. Find the ordinate of the vertex of the graph of this trinomial.

2022 LMT Fall, 1 Tetris

Tetris is a Soviet block game developed in $1984$, probably to torture misbehaving middle school children. Nowadays, Tetris is a game that people play for fun, and we even have a mini-event featuring it, but it shall be used on this test for its original purpose. The $7$ Tetris pieces, which will be used in various problems in this theme, are as follows: [img]https://cdn.artofproblemsolving.com/attachments/b/c/f4a5a2b90fcf87968b8f2a1a848ad32ef52010.png[/img] [b]p1.[/b] Each piece has area $4$. Find the sum of the perimeters of each of the $7$ Tetris pieces. [b]p2.[/b] In a game of Tetris, Qinghan places $4$ pieces every second during the first $2$ minutes, and $2$ pieces every second for the remainder of the game. By the end of the game, her average speed is $3.6$ pieces per second. Find the duration of the game in seconds. [b]p3.[/b] Jeff takes all $7$ different Tetris pieces and puts them next to each other to make a shape. Each piece has an area of $4$. Find the least possible perimeter of such a shape. [b]p4.[/b] Qepsi is playing Tetris, but little does she know: the latest update has added realistic physics! She places two blocks, which form the shape below. Tetrominoes $ABCD$ and $EFGHI J$ are both formed from $4$ squares of side length $1$. Given that $CE = CF$, the distance from point $I$ to the line $AD$ can be expressed as $\frac{A\sqrt{B}-C}{D}$ . Find $1000000A+10000B +100C +D$. [img]https://cdn.artofproblemsolving.com/attachments/9/a/5e96a855b9ebbfd3ea6ebee2b19d7c0a82c7c3.png[/img] [b]p5.[/b] Using the following tetrominoes: [img]https://cdn.artofproblemsolving.com/attachments/3/3/464773d41265819c4f452116c1508baa660780.png[/img] Find the number of ways to tile the shape below, with rotation allowed, but reflection disallowed: [img]https://cdn.artofproblemsolving.com/attachments/d/6/943a9161ff80ba23bb8ddb5acaf699df187e07.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1964 AMC 12/AHSME, 31

Let \[f(n)=\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{5-3\sqrt{5}}{10}\left(\dfrac{1-\sqrt{5}}{2}\right)^n.\] Then $f(n+1)-f(n-1)$, expressed in terms of $f(n)$, equals: $\textbf{(A)}\ \dfrac{1}{2}f(n) \qquad \textbf{(B)}\ f(n)\qquad \textbf{(C)}\ 2f(n)+1 \qquad \textbf{(D)}\ f^2(n) \qquad \textbf{(E)}\ \dfrac{1}{2}(f^2(n)-1)$