This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2022 Moldova EGMO TST, 5

Tags: algebra
Solve the equation in $\mathbb{R}$ $$\left\{\left\{\frac{x^2-x}{2021}\right \}-\left\{\frac{x^2+x}{2022}\right \} \right \}=0.$$

1995 IMO Shortlist, 3

Let $ n$ be an integer, $ n \geq 3.$ Let $ a_1, a_2, \ldots, a_n$ be real numbers such that $ 2 \leq a_i \leq 3$ for $ i \equal{} 1, 2, \ldots, n.$ If $ s \equal{} a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n,$ prove that \[ \frac{a^2_1 \plus{} a^2_2 \minus{} a^2_3}{a_1 \plus{} a_2 \minus{} a_3} \plus{} \frac{a^2_2 \plus{} a^2_3 \minus{} a^2_4}{a_2 \plus{} a_3 \minus{} a_4} \plus{} \ldots \plus{} \frac{a^2_n \plus{} a^2_1 \minus{} a^2_2}{a_n \plus{} a_1 \minus{} a_2} \leq 2s \minus{} 2n.\]

2017 Austria Beginners' Competition, 1

The nonnegative real numbers $a$ and $b$ satisfy $a + b = 1$. Prove that: $$\frac{1}{2} \leq \frac{a^3+b^3}{a^2+b^2} \leq 1$$ When do we have equality in the right inequality and when in the left inequality? [i]Proposed by Walther Janous [/i]

2024 German National Olympiad, 6

Decide whether there exists a largest positive integer $n$ such that the inequality \[\frac{\frac{a^2}{b}+\frac{b^2}{a}}{2} \ge \sqrt[n]{\frac{a^n+b^n}{2}}\] holds for all positive real numbers $a$ and $b$. If such a largest positive integer $n$ exists, determine it.

2007 Germany Team Selection Test, 1

Let $ k \in \mathbb{N}$. A polynomial is called [i]$ k$-valid[/i] if all its coefficients are integers between 0 and $ k$ inclusively. (Here we don't consider 0 to be a natural number.) [b]a.)[/b] For $ n \in \mathbb{N}$ let $ a_n$ be the number of 5-valid polynomials $ p$ which satisfy $ p(3) = n.$ Prove that each natural number occurs in the sequence $ (a_n)_n$ at least once but only finitely often. [b]b.)[/b] For $ n \in \mathbb{N}$ let $ a_n$ be the number of 4-valid polynomials $ p$ which satisfy $ p(3) = n.$ Prove that each natural number occurs infinitely often in the sequence $ (a_n)_n$ .

1980 Poland - Second Round, 2

Prove that for any real numbers $ x_1, x_2, x_3, \ldots, x_n $ the inequality is true $$ x_1x_2x_3\ldots x_n \leq \frac{x_1^2}{2} + \frac{x_2^4}{4} + \frac{x_3^8}{8} + \ldots + \frac{x_n^{2^ n}}{2^n} + \frac{1}{2^n}$$

1990 IMO Longlists, 66

Find all the continuous bounded functions $f: \mathbb R \to \mathbb R$ such that \[(f(x))^2 -(f(y))^2 = f(x + y)f(x - y) \text{ for all } x, y \in \mathbb R.\]

2010 Kosovo National Mathematical Olympiad, 1

Tags: function , algebra
If the real function $f(x)=\cos x+\sum_{i=1}^{n}\cos(a_ix)$ is periodic, prove that $a_i,i\in\{1,2,...,n\}$, are rational numbers.

2018 JBMO Shortlist, A3

Let $a,b,c$ be positive real numbers . Prove that$$ \frac{1}{ab(b+1)(c+1)}+\frac{1}{bc(c+1)(a+1)}+\frac{1}{ca(a+1)(b+1)}\geq\frac{3}{(1+abc)^2}.$$

1969 All Soviet Union Mathematical Olympiad, 128

Prove that for the arbitrary positive $a_1, a_2, ... , a_n$ the following inequality is held $$\frac{a_1}{a_2+a_3}+\frac{a_2}{a_3+a_4}+....+\frac{a_{n-1}}{a_n+a_1}+\frac{a_n}{a_1+a_2}>\frac{n}{4}$$

1987 Greece Junior Math Olympiad, 2

Tags: algebra
Solve $(x-4)(x-5)(x-6)(x-7)=1680$

1988 Bundeswettbewerb Mathematik, 4

Provided the equation $xyz = p^n(x + y + z)$ where $p \geq 3$ is a prime and $n \in \mathbb{N}$. Prove that the equation has at least $3n + 3$ different solutions $(x,y,z)$ with natural numbers $x,y,z$ and $x < y < z$. Prove the same for $p > 3$ being an odd integer.

Maryland University HSMC part II, 1998

[b]p1.[/b] Four positive numbers are placed at the vertices of a rectangle. Each number is at least as large as the average of the two numbers at the adjacent vertices. Prove that all four numbers are equal. [b]p2.[/b] The sum $498+499+500+501=1998$ is one way of expressing $1998$ as a sum of consecutive positive integers. Find all ways of expressing $1998$ as a sum of two or more consecutive positive integers. Prove your list is complete. [b]p3.[/b] An infinite strip (two parallel lines and the region between them) has a width of $1$ inch. What is the largest value of $A$ such that every triangle with area $A$ square inches can be placed on this strip? Justify your answer. [b]p4.[/b] A plane divides space into two regions. Two planes that intersect in a line divide space into four regions. Now suppose that twelve planes are given in space so that a) every two of them intersect in a line, b) every three of them intersect in a point, and c) no four of them have a common point. Into how many regions is space divided? Justify your answer. [b]p5.[/b] Five robbers have stolen $1998$ identical gold coins. They agree to the following: The youngest robber proposes a division of the loot. All robbers, including the proposer, vote on the proposal. If at least half the robbers vote yes, then that proposal is accepted. If not, the proposer is sent away with no loot and the next youngest robber makes a new proposal to be voted on by the four remaining robbers, with the same rules as above. This continues until a proposed division is accepted by at least half the remaining robbers. Each robber guards his best interests: He will vote for a proposal if and only if it will give him more coins than he will acquire by rejecting it, and the proposer will keep as many coins for himself as he can. How will the coins be distributed? Explain your reasoning. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2009 Greece JBMO TST, 3

Given are the non zero natural numbers $a,b,c$ such that the number $\frac{a\sqrt2+b\sqrt3}{b\sqrt2+c\sqrt3}$ is rational. Prove that the number $\frac{a^2+b^2+c^2}{a+b+c}$ is an integer .

2014 Romania Team Selection Test, 2

Let $n \ge 2$ be an integer. Show that there exist $n+1$ numbers $x_1, x_2, \ldots, x_{n+1} \in \mathbb{Q} \setminus \mathbb{Z}$, so that $\{ x_1^3 \} + \{ x_2^3 \} + \cdots + \{ x_n^3 \}=\{ x_{n+1}^3 \}$, where $\{ x \}$ is the fractionary part of $x$.

2021 Bangladesh Mathematical Olympiad, Problem 4

Tags: algebra
$P(x)$ is a polynomial in $x$ with non-negative integer coefficients. If $P(1)=5$ and $P(P(1))=177$, what is the sum of all possible values of $P(10)$?

2003 Gheorghe Vranceanu, 1

Solve in $ \mathbb{R}^2 $ the equation $ \lfloor x/y-y/x \rfloor =x^2/y+y/x^2. $

1976 IMO Longlists, 40

Let $g(x)$ be a fixed polynomial with real coefficients and define $f(x)$ by $f(x) =x^2 + xg(x^3)$. Show that $f(x)$ is not divisible by $x^2 - x + 1$.

2005 Today's Calculation Of Integral, 14

Calculate the following indefinite integrals. [1] $\int \frac{\sin x\cos x}{1+\sin ^ 2 x}dx$ [2] $\int x\log_{10} x dx$ [3] $\int \frac{x}{\sqrt{2x-1}}dx$ [4] $\int (x^2+1)\ln x dx$ [5] $\int e^x\cos x dx$

2006 Pre-Preparation Course Examination, 2

a) Show that you can divide an angle $\theta$ to three equal parts using compass and ruler if and only if the polynomial $4t^3-3t-\cos (\theta)$ is reducible over $\mathbb{Q}(\cos (\theta))$. b) Is it always possible to divide an angle into five equal parts?

2012 ELMO Shortlist, 10

Let $A_1A_2A_3A_4A_5A_6A_7A_8$ be a cyclic octagon. Let $B_i$ by the intersection of $A_iA_{i+1}$ and $A_{i+3}A_{i+4}$. (Take $A_9 = A_1$, $A_{10} = A_2$, etc.) Prove that $B_1, B_2, \ldots , B_8$ lie on a conic. [i]David Yang.[/i]

1989 IMO Longlists, 56

Let $ P_1(x), P_2(x), \ldots, P_n(x)$ be real polynomials, i.e. they have real coefficients. Show that there exist real polynomials $ A_r(x),B_r(x) \quad (r \equal{} 1, 2, 3)$ such that \[ \sum^n_{s\equal{}1} \left\{ P_s(x) \right \}^2 \equiv \left( A_1(x) \right)^2 \plus{} \left( B_1(x) \right)^2\] \[ \sum^n_{s\equal{}1} \left\{ P_s(x) \right \}^2 \equiv \left( A_2(x) \right)^2 \plus{} x \left( B_2(x) \right)^2\] \[ \sum^n_{s\equal{}1} \left\{ P_s(x) \right \}^2 \equiv \left( A_3(x) \right)^2 \minus{} x \left( B_3(x) \right)^2\]

2008 CHKMO, 2

is there any polynomial of $deg=2007$ with integer coefficients,such that for any integer $n$,$f(n),f(f(n)),f(f(f(n))),...$ is coprime to each other?

1977 Swedish Mathematical Competition, 6

Show that there are positive reals $a$, $b$, $c$ such that \[\left\{ \begin{array}{l} a^2 + b^2 + c^2 > 2 \\ a^3 + b^3 + c^3 <2 \\ a^4 + b^4 + c^4 > 2 \\ \end{array} \right. \]

2015 İberoAmerican, 3

Let $\alpha$ and $\beta$ be the roots of $x^{2} - qx + 1$, where $q$ is a rational number larger than $2$. Let $s_1 = \alpha + \beta$, $t_1 = 1$, and for all integers $n \geq 2$: $s_n = \alpha^n + \beta^n$ $t_n = s_{n-1} + 2s_{n-2} + \cdot \cdot \cdot + (n - 1)s_{1} + n$ Prove that, for all odd integers $n$, $t_n$ is the square of a rational number.